ﻻ يوجد ملخص باللغة العربية
We argue that global F-theory compactifications to four dimensions generally exhibit higher rank Yukawa matrices from multiple geometric contributions known as Yukawa points. The holomorphic couplings furthermore have large hierarchies for generic complex structure moduli. Unlike local considerations, the compact setup realizes these features all through geometry, and requires no instanton corrections. As an example, we consider a concrete toy model with $SU(5) times U(1)$ gauge symmetry. From the geometry, we find two Yukawa points for the ${bf 10}_{-2} , bar{bf 5}_6 , bar{bf 5}_{-4}$ coupling, producing a rank two Yukawa matrix. Our methods allow us to track all complex structure dependencies of the holomorphic couplings and study the ratio numerically. This reveals hierarchies of ${cal O}(10^5)$ and larger on a full-dimensional subspace of the moduli space.
The calculation of Yukawa couplings in F-theory GUTs is developed. The method is applied to the top and bottom Yukawa couplings in an SU(5) model of fermion masses based on family symmetries coming from the SU(5)_perp factor in the underlying E(8) th
The fermion mass textures are discussed in the context of F-theory SU(5) GUT. The tree-level up, down and charged lepton Yukawa couplings are computed in terms of the integrals of overlapping wavefunctions at the intersection points of three matter c
We revisit local F-theory SO(10) and SU(5) GUTs and analyze their properties within the framework of the maximal underlying E_8 symmetry in the elliptic fibration. We consider the symmetry enhancements along the intersections of seven-branes with the
We present an explicit construction of ${cal O}(10^{15})$ globally consistent string compactifications that realize the exact chiral spectrum of the Standard Model of particle physics with gauge coupling unification in the context of F-theory. Utiliz
In recent work, we conjectured that Calabi-Yau threefolds defined over $mathbb{Q}$ and admitting a supersymmetric flux compactification are modular, and associated to (the Tate twists of) weight-two cuspidal Hecke eigenforms. In this work, we will ad