ترغب بنشر مسار تعليمي؟ اضغط هنا

DRB-GAN: A Dynamic ResBlock Generative Adversarial Network for Artistic Style Transfer

224   0   0.0 ( 0 )
 نشر من قبل Wenju Xu
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

The paper proposes a Dynamic ResBlock Generative Adversarial Network (DRB-GAN) for artistic style transfer. The style code is modeled as the shared parameters for Dynamic ResBlocks connecting both the style encoding network and the style transfer network. In the style encoding network, a style class-aware attention mechanism is used to attend the style feature representation for generating the style codes. In the style transfer network, multiple Dynamic ResBlocks are designed to integrate the style code and the extracted CNN semantic feature and then feed into the spatial window Layer-Instance Normalization (SW-LIN) decoder, which enables high-quality synthetic images with artistic style transfer. Moreover, the style collection conditional discriminator is designed to equip our DRB-GAN model with abilities for both arbitrary style transfer and collection style transfer during the training stage. No matter for arbitrary style transfer or collection style transfer, extensive experiments strongly demonstrate that our proposed DRB-GAN outperforms state-of-the-art methods and exhibits its superior performance in terms of visual quality and efficiency. Our source code is available at color{magenta}{url{https://github.com/xuwenju123/DRB-GAN}}.



قيم البحث

اقرأ أيضاً

Generative adversarial networks (GANs) have been a popular deep generative model for real-world applications. Despite many recent efforts on GANs that have been contributed, mode collapse and instability of GANs are still open problems caused by thei r adversarial optimization difficulties. In this paper, motivated by the cooperative co-evolutionary algorithm, we propose a Cooperative Dual Evolution based Generative Adversarial Network (CDE-GAN) to circumvent these drawbacks. In essence, CDE-GAN incorporates dual evolution with respect to the generator(s) and discriminators into a unified evolutionary adversarial framework to conduct effective adversarial multi-objective optimization. Thus it exploits the complementary properties and injects dual mutation diversity into training to steadily diversify the estimated density in capturing multi-modes and improve generative performance. Specifically, CDE-GAN decomposes the complex adversarial optimization problem into two subproblems (generation and discrimination), and each subproblem is solved with a separated subpopulation (E-Generator} and E-Discriminators), evolved by its own evolutionary algorithm. Additionally, we further propose a Soft Mechanism to balance the trade-off between E-Generators and E-Discriminators to conduct steady training for CDE-GAN. Extensive experiments on one synthetic dataset and three real-world benchmark image datasets demonstrate that the proposed CDE-GAN achieves a competitive and superior performance in generating good quality and diverse samples over baselines. The code and more generated results are available at our project homepage: https://shiming-chen.github.io/CDE-GAN-website/CDE-GAN.html.
Pansharpening is a widely used image enhancement technique for remote sensing. Its principle is to fuse the input high-resolution single-channel panchromatic (PAN) image and low-resolution multi-spectral image and to obtain a high-resolution multi-sp ectral (HRMS) image. The existing deep learning pansharpening method has two shortcomings. First, features of two input images need to be concatenated along the channel dimension to reconstruct the HRMS image, which makes the importance of PAN images not prominent, and also leads to high computational cost. Second, the implicit information of features is difficult to extract through the manually designed loss function. To this end, we propose a generative adversarial network via the fast guided filter (FGF) for pansharpening. In generator, traditional channel concatenation is replaced by FGF to better retain the spatial information while reducing the number of parameters. Meanwhile, the fusion objects can be highlighted by the spatial attention module. In addition, the latent information of features can be preserved effectively through adversarial training. Numerous experiments illustrate that our network generates high-quality HRMS images that can surpass existing methods, and with fewer parameters.
Style transfer describes the rendering of an image semantic content as different artistic styles. Recently, generative adversarial networks (GANs) have emerged as an effective approach in style transfer by adversarially training the generator to synt hesize convincing counterfeits. However, traditional GAN suffers from the mode collapse issue, resulting in unstable training and making style transfer quality difficult to guarantee. In addition, the GAN generator is only compatible with one style, so a series of GANs must be trained to provide users with choices to transfer more than one kind of style. In this paper, we focus on tackling these challenges and limitations to improve style transfer. We propose adversarial gated networks (Gated GAN) to transfer multiple styles in a single model. The generative networks have three modules: an encoder, a gated transformer, and a decoder. Different styles can be achieved by passing input images through different branches of the gated transformer. To stabilize training, the encoder and decoder are combined as an autoencoder to reconstruct the input images. The discriminative networks are used to distinguish whether the input image is a stylized or genuine image. An auxiliary classifier is used to recognize the style categories of transferred images, thereby helping the generative networks generate images in multiple styles. In addition, Gated GAN makes it possible to explore a new style by investigating styles learned from artists or genres. Our extensive experiments demonstrate the stability and effectiveness of the proposed model for multistyle transfer.
We apply generative adversarial convolutional neural networks to the problem of style transfer to underdrawings and ghost-images in x-rays of fine art paintings with a special focus on enhancing their spatial resolution. We build upon a neural archit ecture developed for the related problem of synthesizing high-resolution photo-realistic image from semantic label maps. Our neural architecture achieves high resolution through a hierarchy of generators and discriminator sub-networks, working throughout a range of spatial resolutions. This coarse-to-fine generator architecture can increase the effective resolution by a factor of eight in each spatial direction, or an overall increase in number of pixels by a factor of 64. We also show that even just a few examples of human-generated image segmentations can greatly improve -- qualitatively and quantitatively -- the generated images. We demonstrate our method on works such as Leonardos Madonna of the carnation and the underdrawing in his Virgin of the rocks, which pose several special problems in style transfer, including the paucity of representative works from which to learn and transfer style information.
This note presents an extension to the neural artistic style transfer algorithm (Gatys et al.). The original algorithm transforms an image to have the style of another given image. For example, a photograph can be transformed to have the style of a f amous painting. Here we address a potential shortcoming of the original method: the algorithm transfers the colors of the original painting, which can alter the appearance of the scene in undesirable ways. We describe simple linear methods for transferring style while preserving colors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا