ﻻ يوجد ملخص باللغة العربية
Pansharpening is a widely used image enhancement technique for remote sensing. Its principle is to fuse the input high-resolution single-channel panchromatic (PAN) image and low-resolution multi-spectral image and to obtain a high-resolution multi-spectral (HRMS) image. The existing deep learning pansharpening method has two shortcomings. First, features of two input images need to be concatenated along the channel dimension to reconstruct the HRMS image, which makes the importance of PAN images not prominent, and also leads to high computational cost. Second, the implicit information of features is difficult to extract through the manually designed loss function. To this end, we propose a generative adversarial network via the fast guided filter (FGF) for pansharpening. In generator, traditional channel concatenation is replaced by FGF to better retain the spatial information while reducing the number of parameters. Meanwhile, the fusion objects can be highlighted by the spatial attention module. In addition, the latent information of features can be preserved effectively through adversarial training. Numerous experiments illustrate that our network generates high-quality HRMS images that can surpass existing methods, and with fewer parameters.
The paper proposes a Dynamic ResBlock Generative Adversarial Network (DRB-GAN) for artistic style transfer. The style code is modeled as the shared parameters for Dynamic ResBlocks connecting both the style encoding network and the style transfer net
Generative adversarial networks (GANs) have been a popular deep generative model for real-world applications. Despite many recent efforts on GANs that have been contributed, mode collapse and instability of GANs are still open problems caused by thei
We propose a novel lightweight generative adversarial network for efficient image manipulation using natural language descriptions. To achieve this, a new word-level discriminator is proposed, which provides the generator with fine-grained training f
In this paper, we introduce a new method for generating an object image from text attributes on a desired location, when the base image is given. One step further to the existing studies on text-to-image generation mainly focusing on the objects appe
In this work, we present the Text Conditioned Auxiliary Classifier Generative Adversarial Network, (TAC-GAN) a text to image Generative Adversarial Network (GAN) for synthesizing images from their text descriptions. Former approaches have tried to co