ﻻ يوجد ملخص باللغة العربية
We apply generative adversarial convolutional neural networks to the problem of style transfer to underdrawings and ghost-images in x-rays of fine art paintings with a special focus on enhancing their spatial resolution. We build upon a neural architecture developed for the related problem of synthesizing high-resolution photo-realistic image from semantic label maps. Our neural architecture achieves high resolution through a hierarchy of generators and discriminator sub-networks, working throughout a range of spatial resolutions. This coarse-to-fine generator architecture can increase the effective resolution by a factor of eight in each spatial direction, or an overall increase in number of pixels by a factor of 64. We also show that even just a few examples of human-generated image segmentations can greatly improve -- qualitatively and quantitatively -- the generated images. We demonstrate our method on works such as Leonardos Madonna of the carnation and the underdrawing in his Virgin of the rocks, which pose several special problems in style transfer, including the paucity of representative works from which to learn and transfer style information.
We describe the application of convolutional neural network style transfer to the problem of improved visualization of underdrawings and ghost-paintings in fine art oil paintings. Such underdrawings and hidden paintings are typically revealed by x-ra
The paper proposes a Dynamic ResBlock Generative Adversarial Network (DRB-GAN) for artistic style transfer. The style code is modeled as the shared parameters for Dynamic ResBlocks connecting both the style encoding network and the style transfer net
Extracting effective deep features to represent content and style information is the key to universal style transfer. Most existing algorithms use VGG19 as the feature extractor, which incurs a high computational cost and impedes real-time style tran
Nowadays, target recognition technique plays an important role in many fields. However, the current target image information based methods suffer from the influence of image quality and the time cost of image reconstruction. In this paper, we propose
The choice of parameters, and the design of the network architecture are important factors affecting the performance of deep neural networks. Genetic Algorithms (GA) have been used before to determine parameters of a network. Yet, GAs perform a finit