ترغب بنشر مسار تعليمي؟ اضغط هنا

Kashaev--Reshetikhin Invariants of Links

99   0   0.0 ( 0 )
 نشر من قبل Calvin McPhail-Snyder
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Kashaev and Reshetikhin previously described a way to define holonomy invariants of knots using quantum $mathfrak{sl}_2$ at a root of unity. These are generalized quantum invariants depend both on a knot $K$ and a representation of the fundamental group of its complement into $mathrm{SL}_2(mathbb{C})$; equivalently, we can think of $mathrm{KR}(K)$ as associating to each knot a function on (a slight generalization of) its character variety. In this paper we clarify some details of their construction. In particular, we show that for $K$ a hyperbolic knot $mathrm{KaRe}(K)$ can be viewed as a function on the geometric component of the $A$-polynomial curve of $K$. We compute some examples at a third root of unity.



قيم البحث

اقرأ أيضاً

We generalize the notion of the quandle polynomial to the case of singquandles. We show that the singquandle polynomial is an invariant of finite singquandles. We also construct a singular link invariant from the singquandle polynomial and show that this new singular link invariant generalizes the singquandle counting invariant. In particular, using the new polynomial invariant, we can distinguish singular links with the same singquandle counting invariant.
221 - Seung-moon Hong 2012
Enhanced Yang-Baxter operators give rise to invariants of oriented links. We expand the enhancing method to generalized Yang-Baxter operators. At present two examples of generalized Yang-Baxter operators are known and recently three types of variatio ns for one of these were discovered. We present the definition of enhanced generalized YB-operators and show that all known examples of generalized YB-operators can be enhanced to give corresponding invariants of oriented links. Most of these invariants are specializations of the polynomial invariant $P$. Invariants from generalized YB-operators are multiplicative after a normalization.
140 - Emanuele Zappala 2021
The ribbon cocycle invariant is defined by means of a partition function using ternary cohomology of self-distributive structures (TSD) and colorings of ribbon diagrams of a framed link, following the same paradigm introduced by Carter, Jelsovsky, Ka mada, Langfor and Saito in Transactions of the American Mathematical Society 2003;355(10):3947-89, for the quandle cocycle invariant. In this article we show that the ribbon cocycle invariant is a quantum invariant. We do so by constructing a ribbon category from a TSD set whose twisting and braiding morphisms entail a given TSD $2$-cocycle. Then we show that the quantum invariant naturally associated to this braided category coincides with the cocycle invariant. We generalize this construction to symmetric monoidal categories and provide classes of examples obtained from Hopf monoids and Lie algebras. We further introduce examples from Hopf-Frobenius algebras, objects studied in quantum computing.
A heap is a set with a certain ternary operation that is self-distributive (TSD) and exemplified by a group with the operation $(x,y,z)mapsto xy^{-1}z$. We introduce and investigate framed link invariants using heaps. In analogy with the knot group, we define the fundamental heap of framed links using group presentations. The fundamental heap is determined for some classes of links such as certain families of torus and pretzel links. We show that for these families of links there exist epimorphisms from fundamental heaps to Vinberg and Coxeter groups, implying that corresponding groups are infinite. A relation to the Wirtinger presentation is also described. The cocycle invariant is defined using ternary self-distributive (TSD) cohomology, by means of a state sum that uses ternary heap $2$-cocycles as weights. It is shown that the cohomology splits into two types, called degenerate and nondegenerate, and that the degenerate part is one dimensional. Subcomplexes are constructed based on group cosets, that allow computations of the nondegenerate part. We apply colorings inferred from fundamental heaps to compute cocycle invariants, and prove that the invariant values can be used to derive algebraic properties of the cohomology.
489 - Ren Guo , Xiaobo Liu 2009
Kashaev algebra associated to a surface is a noncommutative deformation of the algebra of rational functions of Kashaev coordinates. For two arbitrary complex numbers, there is a generalized Kashaev algebra. The relationship between the shear coordin ates and Kashaev coordinates induces a natural relationship between the quantum Teichmuller space and the generalized Kashaev algebra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا