ترغب بنشر مسار تعليمي؟ اضغط هنا

Invariants of links from the generalized Yang-Baxter equation

210   0   0.0 ( 0 )
 نشر من قبل Seung-Moon Hong Mr
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English
 تأليف Seung-moon Hong




اسأل ChatGPT حول البحث

Enhanced Yang-Baxter operators give rise to invariants of oriented links. We expand the enhancing method to generalized Yang-Baxter operators. At present two examples of generalized Yang-Baxter operators are known and recently three types of variations for one of these were discovered. We present the definition of enhanced generalized YB-operators and show that all known examples of generalized YB-operators can be enhanced to give corresponding invariants of oriented links. Most of these invariants are specializations of the polynomial invariant $P$. Invariants from generalized YB-operators are multiplicative after a normalization.



قيم البحث

اقرأ أيضاً

299 - J.Scott Carter 2002
A homology theory is developed for set-theoretic Yang-Baxter equations, and knot invariants are constructed by generalized colorings by biquandles and Yang-Baxter cocycles.
120 - Seung-moon Hong 2012
We consider two approaches to isotopy invariants of oriented links: one from ribbon categories and the other from generalized Yang-Baxter operators with appropriate enhancements. The generalized Yang-Baxter operators we consider are obtained from so- called gYBE objects following a procedure of Kitaev and Wang. We show that the enhancement of these generalized Yang-Baxter operators is canonically related to the twist structure in ribbon categories from which the operators are produced. If a generalized Yang-Baxter operator is obtained from a ribbon category, it is reasonable to expect that two approaches would result in the same invariant. We prove that indeed the two link invariants are the same after normalizations. As examples, we study a new family of generalized Yang-Baxter operators which is obtained from the ribbon fusion categories $SO(N)_2$, where $N$ is an odd integer. These operators are given by $8times 8$ matrices with the parameter $N$ and the link invariants are specializations of the two-variable Kauffman polynomial invariant $F$.
Kashaev and Reshetikhin previously described a way to define holonomy invariants of knots using quantum $mathfrak{sl}_2$ at a root of unity. These are generalized quantum invariants depend both on a knot $K$ and a representation of the fundamental gr oup of its complement into $mathrm{SL}_2(mathbb{C})$; equivalently, we can think of $mathrm{KR}(K)$ as associating to each knot a function on (a slight generalization of) its character variety. In this paper we clarify some details of their construction. In particular, we show that for $K$ a hyperbolic knot $mathrm{KaRe}(K)$ can be viewed as a function on the geometric component of the $A$-polynomial curve of $K$. We compute some examples at a third root of unity.
140 - Emanuele Zappala 2021
The ribbon cocycle invariant is defined by means of a partition function using ternary cohomology of self-distributive structures (TSD) and colorings of ribbon diagrams of a framed link, following the same paradigm introduced by Carter, Jelsovsky, Ka mada, Langfor and Saito in Transactions of the American Mathematical Society 2003;355(10):3947-89, for the quandle cocycle invariant. In this article we show that the ribbon cocycle invariant is a quantum invariant. We do so by constructing a ribbon category from a TSD set whose twisting and braiding morphisms entail a given TSD $2$-cocycle. Then we show that the quantum invariant naturally associated to this braided category coincides with the cocycle invariant. We generalize this construction to symmetric monoidal categories and provide classes of examples obtained from Hopf monoids and Lie algebras. We further introduce examples from Hopf-Frobenius algebras, objects studied in quantum computing.
We generalize the notion of the quandle polynomial to the case of singquandles. We show that the singquandle polynomial is an invariant of finite singquandles. We also construct a singular link invariant from the singquandle polynomial and show that this new singular link invariant generalizes the singquandle counting invariant. In particular, using the new polynomial invariant, we can distinguish singular links with the same singquandle counting invariant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا