ﻻ يوجد ملخص باللغة العربية
Enhanced Yang-Baxter operators give rise to invariants of oriented links. We expand the enhancing method to generalized Yang-Baxter operators. At present two examples of generalized Yang-Baxter operators are known and recently three types of variations for one of these were discovered. We present the definition of enhanced generalized YB-operators and show that all known examples of generalized YB-operators can be enhanced to give corresponding invariants of oriented links. Most of these invariants are specializations of the polynomial invariant $P$. Invariants from generalized YB-operators are multiplicative after a normalization.
A homology theory is developed for set-theoretic Yang-Baxter equations, and knot invariants are constructed by generalized colorings by biquandles and Yang-Baxter cocycles.
We consider two approaches to isotopy invariants of oriented links: one from ribbon categories and the other from generalized Yang-Baxter operators with appropriate enhancements. The generalized Yang-Baxter operators we consider are obtained from so-
Kashaev and Reshetikhin previously described a way to define holonomy invariants of knots using quantum $mathfrak{sl}_2$ at a root of unity. These are generalized quantum invariants depend both on a knot $K$ and a representation of the fundamental gr
The ribbon cocycle invariant is defined by means of a partition function using ternary cohomology of self-distributive structures (TSD) and colorings of ribbon diagrams of a framed link, following the same paradigm introduced by Carter, Jelsovsky, Ka
We generalize the notion of the quandle polynomial to the case of singquandles. We show that the singquandle polynomial is an invariant of finite singquandles. We also construct a singular link invariant from the singquandle polynomial and show that