ﻻ يوجد ملخص باللغة العربية
A heap is a set with a certain ternary operation that is self-distributive (TSD) and exemplified by a group with the operation $(x,y,z)mapsto xy^{-1}z$. We introduce and investigate framed link invariants using heaps. In analogy with the knot group, we define the fundamental heap of framed links using group presentations. The fundamental heap is determined for some classes of links such as certain families of torus and pretzel links. We show that for these families of links there exist epimorphisms from fundamental heaps to Vinberg and Coxeter groups, implying that corresponding groups are infinite. A relation to the Wirtinger presentation is also described. The cocycle invariant is defined using ternary self-distributive (TSD) cohomology, by means of a state sum that uses ternary heap $2$-cocycles as weights. It is shown that the cohomology splits into two types, called degenerate and nondegenerate, and that the degenerate part is one dimensional. Subcomplexes are constructed based on group cosets, that allow computations of the nondegenerate part. We apply colorings inferred from fundamental heaps to compute cocycle invariants, and prove that the invariant values can be used to derive algebraic properties of the cohomology.
The ribbon cocycle invariant is defined by means of a partition function using ternary cohomology of self-distributive structures (TSD) and colorings of ribbon diagrams of a framed link, following the same paradigm introduced by Carter, Jelsovsky, Ka
We introduce the notion of fundamental heap for compact orientable surfaces with boundary embedded in $3$-space, which is an isotopy invariant of the embedding. It is a group, endowed with a ternary heap operation, defined using diagrams of surfaces
We bring cocycle enhancement theory to the case of psyquandles. Analogously to our previous work on virtual biquandle cocycle enhancements, we define enhancements of the psyquandle counting invariant via pairs of a biquandle 2-cocycle and a new funct
Three new knot invariants are defined using cocycles of the generalized quandle homology theory that was proposed by Andruskiewitsch and Gra~na. We specialize that theory to the case when there is a group action on the coefficients. First, quandle
Kashaev and Reshetikhin previously described a way to define holonomy invariants of knots using quantum $mathfrak{sl}_2$ at a root of unity. These are generalized quantum invariants depend both on a knot $K$ and a representation of the fundamental gr