ﻻ يوجد ملخص باللغة العربية
Conformal geometry is studied using the unfolded formulation `a la Vasiliev. Analyzing the first-order consistency of the unfolded equations, we identify the content of zero-forms as the spin-two off-shell Fradkin-Tseytlin module of $mathfrak{so}(2,d)$. We sketch the nonlinear structure of the equations and explain how Weyl invariant densities, which Type-B Weyl anomaly consist of, could be systematically computed within the unfolded formulation. The unfolded equation for conformal geometry is also shown to be reduced to various on-shell gravitational systems by requiring additional algebraic constraints.
Systematic understanding for classes of inflationary models is investigated from the viewpoint of the local conformal symmetry and the slightly broken global symmetry in the framework of the metric-affine geometry. In the metric-affine geometry, whic
A first-order differential equation is provided for a one-form, spin-s connection valued in the two-row, width-(s-1) Young tableau of GL(5). The connection is glued to a zero-form identified with the spin-s Cotton tensor. The usual zero-Cotton equati
Weyl conformal geometry may play a role in early cosmology where effective theory at short distances becomes conformal. Weyl conformal geometry also has a built-in geometric Stueckelberg mechanism: it is broken spontaneously to Riemannian geometry af
We motivate a minimal realization of slow-roll $k$-inflation by incorporating the local conformal symmetry and the broken global $mathrm{SO}(1,1)$ symmetry in the metric-affine geometry. With use of the metric-affine geometry where both the metric an
We study the Standard Model (SM) in Weyl conformal geometry. This embedding is truly minimal, {it with no new fields} beyond the SM spectrum and Weyl geometry. The action inherits a gauged scale symmetry $D(1)$ (known as Weyl gauge symmetry) from the