ﻻ يوجد ملخص باللغة العربية
We motivate a minimal realization of slow-roll $k$-inflation by incorporating the local conformal symmetry and the broken global $mathrm{SO}(1,1)$ symmetry in the metric-affine geometry. With use of the metric-affine geometry where both the metric and the affine connection are treated as independent variables, the local conformal symmetry can be preserved in each term of the Lagrangian and thus higher derivatives of scalar fields can be easily added in a conformally invariant way. Predictions of this minimal slow-roll $k$-inflation, $n_mathrm{s}sim 0.96$, $rsim 0.005$, and $c_mathrm{s}sim 0.03$, are not only consistent with current observational data but also have a prospect to be tested by forthcoming observations.
Systematic understanding for classes of inflationary models is investigated from the viewpoint of the local conformal symmetry and the slightly broken global symmetry in the framework of the metric-affine geometry. In the metric-affine geometry, whic
It is known that power-law k-inflation can be realized for the Lagrangian $P=Xg(Y)$, where $X=-(partial phi)^2/2$ is the kinetic energy of a scalar field $phi$ and $g$ is an arbitrary function in terms of $Y=Xe^{lambda phi/M_{pl}}$ ($lambda$ is a con
We study the Standard Model (SM) in Weyl conformal geometry. This embedding is truly minimal, {it with no new fields} beyond the SM spectrum and Weyl geometry. The action inherits a gauged scale symmetry $D(1)$ (known as Weyl gauge symmetry) from the
We investigate the chaotic inflationary model using the two-loop effective potential of a self-interacting scalar field theory in curved spacetime. We use the potential which contains a non-minimal scalar curvature coupling and a quartic scalar self-
We classify the metric-affine theories of gravitation, in which the metric and the connections are treated as independent variables, by use of several constraints on the connections. Assuming the Einstein-Hilbert action, we find that the equations fo