ترغب بنشر مسار تعليمي؟ اضغط هنا

Minimal $k$-inflation in light of the conformal metric-affine geometry

109   0   0.0 ( 0 )
 نشر من قبل Yusuke Mikura
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We motivate a minimal realization of slow-roll $k$-inflation by incorporating the local conformal symmetry and the broken global $mathrm{SO}(1,1)$ symmetry in the metric-affine geometry. With use of the metric-affine geometry where both the metric and the affine connection are treated as independent variables, the local conformal symmetry can be preserved in each term of the Lagrangian and thus higher derivatives of scalar fields can be easily added in a conformally invariant way. Predictions of this minimal slow-roll $k$-inflation, $n_mathrm{s}sim 0.96$, $rsim 0.005$, and $c_mathrm{s}sim 0.03$, are not only consistent with current observational data but also have a prospect to be tested by forthcoming observations.



قيم البحث

اقرأ أيضاً

Systematic understanding for classes of inflationary models is investigated from the viewpoint of the local conformal symmetry and the slightly broken global symmetry in the framework of the metric-affine geometry. In the metric-affine geometry, whic h is a generalisation of the Riemannian one adopted in the ordinary General Relativity, the affine connection is an independent variable of the metric rather than given e.g. by the Levi-Civita connection as its function. Thanks to this independency, the metric-affine geometry can preserve the local conformal symmetry in each term of the Lagrangian contrary to the Riemannian geometry, and then the local conformal invariance can be compatible with much more kinds of global symmetries. As simple examples, we consider the two-scalar models with the broken $mathrm{SO}(1,1)$ or $mathrm{O}(2)$, leading to the well-known $alpha$-attractor or natural inflation, respectively. The inflaton can be understood as their pseudo Nambu-Goldstone boson.
It is known that power-law k-inflation can be realized for the Lagrangian $P=Xg(Y)$, where $X=-(partial phi)^2/2$ is the kinetic energy of a scalar field $phi$ and $g$ is an arbitrary function in terms of $Y=Xe^{lambda phi/M_{pl}}$ ($lambda$ is a con stant and $M_{pl}$ is the reduced Planck mass). In the presence of a vector field coupled to the inflaton with an exponential coupling $f(phi) propto e^{mu phi/M_{pl}}$, we show that the models with the Lagrangian $P=Xg(Y)$ generally give rise to anisotropic inflationary solutions with $Sigma/H=constant$, where $Sigma$ is an anisotropic shear and $H$ is an isotropic expansion rate. Provided these anisotropic solutions exist in the regime where the ratio $Sigma/H$ is much smaller than 1, they are stable attractors irrespective of the forms of $g(Y)$. We apply our results to concrete models of k-inflation such as the generalized dilatonic ghost condensate/the DBI model and we numerically show that the solutions with different initial conditions converge to the anisotropic power-law inflationary attractors. Even in the de Sitter limit ($lambda to 0$) such solutions can exist, but in this case the null energy condition is generally violated. The latter property is consistent with the Walds cosmic conjecture stating that the anisotropic hair does not survive on the de Sitter background in the presence of matter respecting the dominant/strong energy conditions.
86 - D. M. Ghilencea 2021
We study the Standard Model (SM) in Weyl conformal geometry. This embedding is truly minimal, {it with no new fields} beyond the SM spectrum and Weyl geometry. The action inherits a gauged scale symmetry $D(1)$ (known as Weyl gauge symmetry) from the underlying geometry. The associated Weyl quadratic gravity undergoes spontaneous breaking of $D(1)$ by a geometric Stueckelberg mechanism in which the Weyl gauge field ($omega_mu$) acquires mass by absorbing the spin-zero mode of the $tilde R^2$ term in the action. This mode also generates the Planck scale. The Einstein-Hilbert action emerges in the broken phase. In the presence of the SM, this mechanism receives corrections (from the Higgs) and it can induce electroweak (EW) symmetry breaking. The Higgs field has direct couplings to the Weyl gauge field while the SM fermions only acquire such couplings following the kinetic mixing of the gauge fields of $D(1)times U(1)_Y$. One consequence is that part of the mass of $Z$ boson is not due to the usual Higgs mechanism, but to its mixing with massive $omega_mu$. Precision measurements of $Z$ mass set lower bounds on the mass of $omega_mu$ which can be light (few TeV), depending on the mixing angle and Weyl gauge coupling. The Higgs mass and the EW scale are proportional to the vev of the Stueckelberg field. In the early Universe the Higgs field can have a geometric origin, by Weyl vector fusion, and the Higgs potential can drive inflation. The dependence of the tensor-to-scalar ratio $r$ on the spectral index $n_s$ is similar to that in Starobinsky inflation but mildly shifted to lower $r$ by the Higgs non-minimal coupling to Weyl geometry.
We investigate the chaotic inflationary model using the two-loop effective potential of a self-interacting scalar field theory in curved spacetime. We use the potential which contains a non-minimal scalar curvature coupling and a quartic scalar self- interaction. We analyze the Lyapunov stability of de Sitter solution and show the stability bound. Calculating the inflationary parameters, we systematically explore the spectral index $n_s$ and the tensor-to-scalar ratio $r$, with varying the four parameters, the scalar-curvature coupling $xi_0$, the scalar quartic coupling $lambda_0$, the renormalization scale $mu$ and the e-folding number $N$. It is found that the two-loop correction on $n_s$ is much larger than the leading-log correction, which has previously been studied. We show that the model is consistent with the observation by Planck with WMAP and a recent joint analysis of BICEP2.
81 - Keigo Shimada , Katsuki Aoki , 2018
We classify the metric-affine theories of gravitation, in which the metric and the connections are treated as independent variables, by use of several constraints on the connections. Assuming the Einstein-Hilbert action, we find that the equations fo r the distortion tensor (torsion and non-metricity) become algebraic, which means that those variables are not dynamical. As a result, we can rewrite the basic equations in the form of Riemannian geometry. Although all classified models recover the Einstein gravity in the Palatini formalism (in which we assume there is no coupling between matter and the connections), but when matter field couples to the connections, the effective Einstein equations include an additional hyper energy-momentum tensor obtained from the distortion tensor. Assuming a simple extension of a minimally coupled scalar field in metric-affine gravity, we analyze an inflationary scenario. Even if we adopt a chaotic inflation potential, certain parameters could satisfy observational constraints. Furthermore, we find that a simple form of Galileon scalar field in metric-affine could cause G-inflation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا