ﻻ يوجد ملخص باللغة العربية
A first-order differential equation is provided for a one-form, spin-s connection valued in the two-row, width-(s-1) Young tableau of GL(5). The connection is glued to a zero-form identified with the spin-s Cotton tensor. The usual zero-Cotton equation for a symmetric, conformal spin-s tensor gauge field in 3D is the flatness condition for the sum of the GL(5) spin-s and background connections. This presentation of the equations allows to reformulate in a compact way the cohomological problem studied in 1511.07389, featuring the spin-s Schouten tensor. We provide full computational details for spin 3 and 4 and present the general spin-s case in a compact way.
Conformal geometry is studied using the unfolded formulation `a la Vasiliev. Analyzing the first-order consistency of the unfolded equations, we identify the content of zero-forms as the spin-two off-shell Fradkin-Tseytlin module of $mathfrak{so}(2,d
We study conformal higher spin (CHS) fields on constant curvature backgrounds. By employing parent formulation technique in combination with tractor description of GJMS operators we find a manifestly factorized form of the CHS wave operators for symm
The dynamics of higher-spin fields in braneworlds is discussed. In particular, we study fermionic and bosonic higher-spin fields in AdS_5 and their localization on branes. We find that four-dimensional zero modes exist only for spin-one fields, if th
It is shown that similarly to massless superparticle, classical global symmetry of the Berkovits twistor string action is infinite-dimensional. We identify its superalgebra, whose finite-dimensional subalgebra contains $psl(4|4,mathbb R)$ superalgebr
We develop a general formalism of duality rotations for bosonic conformal spin-$s$ gauge fields, with $sgeq 2$, in a conformally flat four-dimensional spacetime. In the $s=1$ case this formalism is equivalent to the theory of $mathsf{U}(1)$ duality-i