ﻻ يوجد ملخص باللغة العربية
Via a sequence of approximations of the Lagrangian in Hamiltons principle for dispersive nonlinear gravity waves we derive a hierarchy of Hamiltonian models for describing wave-current interaction (WCI) in nonlinear dispersive wave dynamics on free surfaces. A subclass of these WCI Hamiltonians admits emph{emergent singular solutions} for certain initial conditions. These singular solutions are identified with a singular momentum map for left action of the diffeomorphisms on a semidirect-product Lie algebra. This semidirect-product Lie algebra comprises vector fields representing horizontal current velocity acting on scalar functions representing wave elevation. We use computational simulations to demonstrate the dynamical interactions of the emergent wavefront trains which are admitted by this special subclass of Hamiltonians for a variety of initial conditions. In particular, we investigate: (1) A variety of localised initial current configurations in still water whose subsequent propagation generates surface-elevation dynamics on an initially flat surface; and (2) The release of initially confined configurations of surface elevation in still water that generate dynamically interacting fronts of localised currents and wave trains. The results of these simulations show intricate wave-current interaction patterns whose structures are similar to those seen, for example, in Synthetic Aperture Radar (SAR) images taken from the space shuttle.
To investigate the formation mechanism of energy spectra of internal waves in the oceans, direct numerical simulations are performed. The simulations are based on the reduced dynamical equations of rotating stratified turbulence. In the reduced dynam
The nonlinear dynamics of waves at the sea surface is believed to be ruled by the Weak Turbulence framework. In order to investigate the nonlinear coupling among gravity surface waves, we developed an experiment in the Coriolis facility which is a 13
Wave--current interaction (WCI) dynamics energizes and mixes the ocean thermocline by producing a combination of Langmuir circulation, internal waves and turbulent shear flows, which interact over a wide range of time scales. Two complementary approa
The classic evolution equations for potential flow on the free surface of a fluid flow are not closed because the pressure and the vertical velocity dynamics are not specified on the free surface. Moreover, their wave dynamics does not cause circulat
We are modelling multi-scale, multi-physics uncertainty in wave-current interaction (WCI). To model uncertainty in WCI, we introduce stochasticity into the wave dynamics of two classic models of WCI; namely, the Generalised Lagrangian Mean (GLM) mode