ﻻ يوجد ملخص باللغة العربية
We are modelling multi-scale, multi-physics uncertainty in wave-current interaction (WCI). To model uncertainty in WCI, we introduce stochasticity into the wave dynamics of two classic models of WCI; namely, the Generalised Lagrangian Mean (GLM) model and the Craik--Leibovich (CL) model. The key idea for the GLM approach is the separation of the Lagrangian (fluid) and Eulerian (wave) degrees of freedom in Hamiltons principle. This is done by coupling an Euler--Poincare {it reduced Lagrangian} for the current flow and a {it phase-space Lagrangian} for the wave field. WCI in the GLM model involves the nonlinear Doppler shift in frequency of the Hamiltonian wave subsystem, which arises because the waves propagate in the frame of motion of the Lagrangian-mean velocity of the current. In contrast, WCI in the CL model arises because the fluid velocity is defined relative to the frame of motion of the Stokes mean drift velocity, which is usually taken to be prescribed, time independent and driven externally. We compare the GLM and CL theories by placing them both into the general framework of a stochastic Hamiltons principle for a 3D Euler--Boussinesq (EB) fluid in a rotating frame. In other examples, we also apply the GLM and CL methods to add wave physics and stochasticity to the familiar 1D and 2D shallow water flow models. The differences in the types of stochasticity which arise for GLM and CL models can be seen by comparing the Kelvin circulation theorems for the two models. The GLM model acquires stochasticity in its Lagrangian transport velocity for the currents and also in its group velocity for the waves. The Kelvin circulation theorem stochastic CL model can accept stochasticity in its both its integrand and in the Lagrangian transport velocity of its circulation loop.
The classic evolution equations for potential flow on the free surface of a fluid flow are not closed because the pressure and the vertical velocity dynamics are not specified on the free surface. Moreover, their wave dynamics does not cause circulat
Wave--current interaction (WCI) dynamics energizes and mixes the ocean thermocline by producing a combination of Langmuir circulation, internal waves and turbulent shear flows, which interact over a wide range of time scales. Two complementary approa
We derive a family of ideal (nondissipative) 3D sound-proof fluid models that includes both the Lipps-Hemler anelastic approximation (AA) and the Durran pseudo-incompressible approximation (PIA). This family of models arises in the Euler-Poincar{e} f
A Richardson triple is an ideal fluid flow map $g_{t/ep,t,ep t} = h_{t/ep}k_t l_{ep t}$ composed of three smooth maps with separated time scales: slow, intermediate and fast; corresponding to the big, little, and lesser whorls in Richardsons well-kno
We review the role of dual pairs in mechanics and use them to derive particle-like solutions to regularized incompressible fluid systems. In our case we have a dual pair resulting from the action of diffeomorphisms on point particles (essentially by