ﻻ يوجد ملخص باللغة العربية
Graph Neural Networks (GNNs) have achieved great success among various domains. Nevertheless, most GNN methods are sensitive to the quality of graph structures. To tackle this problem, some studies exploit different graph structure learning strategies to refine the original graph structure. However, these methods only consider feature information while ignoring available label information. In this paper, we propose a novel label-informed graph structure learning framework which incorporates label information explicitly through a class transition matrix. We conduct extensive experiments on seven node classification benchmark datasets and the results show that our method outperforms or matches the state-of-the-art baselines.
Graph neural networks (GNNs) achieve remarkable success in graph-based semi-supervised node classification, leveraging the information from neighboring nodes to improve the representation learning of target node. The success of GNNs at node classific
Graphs are widely used to model the relational structure of data, and the research of graph machine learning (ML) has a wide spectrum of applications ranging from drug design in molecular graphs to friendship recommendation in social networks. Prevai
A scalable semi-supervised node classification method on graph-structured data, called GraphHop, is proposed in this work. The graph contains attributes of all nodes but labels of a few nodes. The classical label propagation (LP) method and the emerg
Multi-label classification (MLC) is an important class of machine learning problems that come with a wide spectrum of applications, each demanding a possibly different evaluation criterion. When solving the MLC problems, we generally expect the learn
Graph neural networks (GNN) have been ubiquitous in graph learning tasks such as node classification. Most of GNN methods update the node embedding iteratively by aggregating its neighbors information. However, they often suffer from negative disturb