ترغب بنشر مسار تعليمي؟ اضغط هنا

GraphHop: An Enhanced Label Propagation Method for Node Classification

82   0   0.0 ( 0 )
 نشر من قبل Tian Xie
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A scalable semi-supervised node classification method on graph-structured data, called GraphHop, is proposed in this work. The graph contains attributes of all nodes but labels of a few nodes. The classical label propagation (LP) method and the emerging graph convolutional network (GCN) are two popular semi-supervised solutions to this problem. The LP method is not effective in modeling node attributes and labels jointly or facing a slow convergence rate on large-scale graphs. GraphHop is proposed to its shortcoming. With proper initial label vector embeddings, each iteration of GraphHop contains two steps: 1) label aggregation and 2) label update. In Step 1, each node aggregates its neighbors label vectors obtained in the previous iteration. In Step 2, a new label vector is predicted for each node based on the label of the node itself and the aggregated label information obtained in Step 1. This iterative procedure exploits the neighborhood information and enables GraphHop to perform well in an extremely small label rate setting and scale well for very large graphs. Experimental results show that GraphHop outperforms state-of-the-art graph learning methods on a wide range of tasks (e.g., multi-label and multi-class classification on citation networks, social graphs, and commodity consumption graphs) in graphs of various sizes. Our codes are publicly available on GitHub (https://github.com/TianXieUSC/GraphHop).



قيم البحث

اقرأ أيضاً

217 - Liping Wang , Fenyu Hu , Shu Wu 2021
Graph Neural Networks (GNNs) have achieved great success among various domains. Nevertheless, most GNN methods are sensitive to the quality of graph structures. To tackle this problem, some studies exploit different graph structure learning strategie s to refine the original graph structure. However, these methods only consider feature information while ignoring available label information. In this paper, we propose a novel label-informed graph structure learning framework which incorporates label information explicitly through a class transition matrix. We conduct extensive experiments on seven node classification benchmark datasets and the results show that our method outperforms or matches the state-of-the-art baselines.
Graph neural networks (GNNs) achieve remarkable success in graph-based semi-supervised node classification, leveraging the information from neighboring nodes to improve the representation learning of target node. The success of GNNs at node classific ation depends on the assumption that connected nodes tend to have the same label. However, such an assumption does not always work, limiting the performance of GNNs at node classification. In this paper, we propose label-consistency based graph neural network(LC-GNN), leveraging node pairs unconnected but with the same labels to enlarge the receptive field of nodes in GNNs. Experiments on benchmark datasets demonstrate the proposed LC-GNN outperforms traditional GNNs in graph-based semi-supervised node classification.We further show the superiority of LC-GNN in sparse scenarios with only a handful of labeled nodes.
The rise of digitization of cultural documents offers large-scale contents, opening the road for development of AI systems in order to preserve, search, and deliver cultural heritage. To organize such cultural content also means to classify them, a t ask that is very familiar to modern computer science. Contextual information is often the key to structure such real world data, and we propose to use it in form of a knowledge graph. Such a knowledge graph, combined with content analysis, enhances the notion of proximity between artworks so it improves the performances in classification tasks. In this paper, we propose a novel use of a knowledge graph, that is constructed on annotated data and pseudo-labeled data. With label propagation, we boost artwork classification by training a model using a graph convolutional network, relying on the relationships between entities of the knowledge graph. Following a transductive learning framework, our experiments show that relying on a knowledge graph modeling the relations between labeled data and unlabeled data allows to achieve state-of-the-art results on multiple classification tasks on a dataset of paintings, and on a dataset of Buddha statues. Additionally, we show state-of-the-art results for the difficult case of dealing with unbalanced data, with the limitation of disregarding classes with extremely low degrees in the knowledge graph.
Based on PixelHop and PixelHop++, which are recently developed using the successive subspace learning (SSL) framework, we propose an enhanced solution for object classification, called E-PixelHop, in this work. E-PixelHop consists of the following st eps. First, to decouple the color channels for a color image, we apply principle component analysis and project RGB three color channels onto two principle subspaces which are processed separately for classification. Second, to address the importance of multi-scale features, we conduct pixel-level classification at each hop with various receptive fields. Third, to further improve pixel-level classification accuracy, we develop a supervised label smoothing (SLS) scheme to ensure prediction consistency. Forth, pixel-level decisions from each hop and from each color subspace are fused together for image-level decision. Fifth, to resolve confusing classes for further performance boosting, we formulate E-PixelHop as a two-stage pipeline. In the first stage, multi-class classification is performed to get a soft decision for each class, where the top 2 classes with the highest probabilities are called confusing classes. Then,we conduct a binary classification in the second stage. The main contributions lie in Steps 1, 3 and 5.We use the classification of the CIFAR-10 dataset as an example to demonstrate the effectiveness of the above-mentioned key components of E-PixelHop.
Multi-label classification (MLC) studies the problem where each instance is associated with multiple relevant labels, which leads to the exponential growth of output space. MLC encourages a popular framework named label compression (LC) for capturing label dependency with dimension reduction. Nevertheless, most existing LC methods failed to consider the influence of the feature space or misguided by original problematic features, so that may result in performance degeneration. In this paper, we present a compact learning (CL) framework to embed the features and labels simultaneously and with mutual guidance. The proposal is a versatile concept, hence the embedding way is arbitrary and independent of the subsequent learning process. Following its spirit, a simple yet effective implementation called compact multi-label learning (CMLL) is proposed to learn a compact low-dimensional representation for both spaces. CMLL maximizes the dependence between the embedded spaces of the labels and features, and minimizes the loss of label space recovery concurrently. Theoretically, we provide a general analysis for different embedding methods. Practically, we conduct extensive experiments to validate the effectiveness of the proposed method.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا