ﻻ يوجد ملخص باللغة العربية
A scalable semi-supervised node classification method on graph-structured data, called GraphHop, is proposed in this work. The graph contains attributes of all nodes but labels of a few nodes. The classical label propagation (LP) method and the emerging graph convolutional network (GCN) are two popular semi-supervised solutions to this problem. The LP method is not effective in modeling node attributes and labels jointly or facing a slow convergence rate on large-scale graphs. GraphHop is proposed to its shortcoming. With proper initial label vector embeddings, each iteration of GraphHop contains two steps: 1) label aggregation and 2) label update. In Step 1, each node aggregates its neighbors label vectors obtained in the previous iteration. In Step 2, a new label vector is predicted for each node based on the label of the node itself and the aggregated label information obtained in Step 1. This iterative procedure exploits the neighborhood information and enables GraphHop to perform well in an extremely small label rate setting and scale well for very large graphs. Experimental results show that GraphHop outperforms state-of-the-art graph learning methods on a wide range of tasks (e.g., multi-label and multi-class classification on citation networks, social graphs, and commodity consumption graphs) in graphs of various sizes. Our codes are publicly available on GitHub (https://github.com/TianXieUSC/GraphHop).
Graph Neural Networks (GNNs) have achieved great success among various domains. Nevertheless, most GNN methods are sensitive to the quality of graph structures. To tackle this problem, some studies exploit different graph structure learning strategie
Graph neural networks (GNNs) achieve remarkable success in graph-based semi-supervised node classification, leveraging the information from neighboring nodes to improve the representation learning of target node. The success of GNNs at node classific
The rise of digitization of cultural documents offers large-scale contents, opening the road for development of AI systems in order to preserve, search, and deliver cultural heritage. To organize such cultural content also means to classify them, a t
Based on PixelHop and PixelHop++, which are recently developed using the successive subspace learning (SSL) framework, we propose an enhanced solution for object classification, called E-PixelHop, in this work. E-PixelHop consists of the following st
Multi-label classification (MLC) studies the problem where each instance is associated with multiple relevant labels, which leads to the exponential growth of output space. MLC encourages a popular framework named label compression (LC) for capturing