ﻻ يوجد ملخص باللغة العربية
Graph neural networks (GNN) have been ubiquitous in graph learning tasks such as node classification. Most of GNN methods update the node embedding iteratively by aggregating its neighbors information. However, they often suffer from negative disturbance, due to edges connecting nodes with different labels. One approach to alleviate this negative disturbance is to use attention, but current attention always considers feature similarity and suffers from the lack of supervision. In this paper, we consider the label dependency of graph nodes and propose a decoupling attention mechanism to learn both hard and soft attention. The hard attention is learned on labels for a refined graph structure with fewer inter-class edges. Its purpose is to reduce the aggregations negative disturbance. The soft attention is learned on features maximizing the information gain by message passing over better graph structures. Moreover, the learned attention guides the label propagation and the feature propagation. Extensive experiments are performed on five well-known benchmark graph datasets to verify the effectiveness of the proposed method.
Graph neural networks (GNNs) achieve remarkable success in graph-based semi-supervised node classification, leveraging the information from neighboring nodes to improve the representation learning of target node. The success of GNNs at node classific
Graph convolutional network (GCN) provides a powerful means for graph-based semi-supervised tasks. However, as a localized first-order approximation of spectral graph convolution, the classic GCN can not take full advantage of unlabeled data, especia
Graph Convolutional Networks (GCNs) have shown significant improvements in semi-supervised learning on graph-structured data. Concurrently, unsupervised learning of graph embeddings has benefited from the information contained in random walks. In thi
Graph convolutional networks (GCNs) have achieved promising performance on various graph-based tasks. However they suffer from over-smoothing when stacking more layers. In this paper, we present a quantitative study on this observation and develop no
Graph convolutional neural network provides good solutions for node classification and other tasks with non-Euclidean data. There are several graph convolutional models that attempt to develop deep networks but do not cause serious over-smoothing at