ﻻ يوجد ملخص باللغة العربية
We study {em generalized graph splines,} introduced by Gilbert, Viel, and the last author. For a large class of rings, we characterize the graphs that only admit constant splines. To do this, we prove that if a graph has a particular type of cutset (e.g., a bridge), then the space of splines naturally decomposes as a certain direct sum of submodules. As an application, we use these results to describe splines on a triangulation studied by Zhou and Lai, but over a different ring than they used.
A generalized spline on a graph $G$ with edges labeled by ideals in a ring $R$ consists of a vertex-labeling by elements of $R$ so that the labels on adjacent vertices $u, v$ differ by an element of the ideal associated to the edge $uv$. We study the
A graph $Gamma$ is said to be symmetric if its automorphism group $rm Aut(Gamma)$ acts transitively on the arc set of $Gamma$. In this paper, we show that if $Gamma$ is a finite connected heptavalent symmetric graph with solvable stabilizer admitting
Given a graph whose edges are labeled by ideals in a ring, a generalized spline is a labeling of each vertex by a ring element so that adjacent vertices differ by an element of the ideal associated to the edge. We study splines over the ring Z/mZ. Pr
Gromov hyperbolicity is an interesting geometric property, and so it is natural to study it in the context of geometric graphs. It measures the tree-likeness of a graph from a metric viewpoint. In particular, we are interested in circular-arc graphs,
Let $G$ be a finite, undirected $d$-regular graph and $A(G)$ its normalized adjacency matrix, with eigenvalues $1 = lambda_1(A)geq dots ge lambda_n ge -1$. It is a classical fact that $lambda_n = -1$ if and only if $G$ is bipartite. Our main result p