ﻻ يوجد ملخص باللغة العربية
In this paper, we demonstrate the construction of generalized Rough Polyhamronic Splines (GRPS) within the Bayesian framework, in particular, for multiscale PDEs with rough coefficients. The optimal coarse basis can be derived automatically by the randomization of the original PDEs with a proper prior distribution and the conditional expectation given partial information on edge or derivative measurements. We prove the (quasi)-optimal localization and approximation properties of the obtained bases, and justify the theoretical results with numerical experiments.
This paper concerns the convex optimal control problem governed by multiscale elliptic equations with arbitrarily rough $L^infty$ coefficients, which has important applications in composite materials and geophysics. We use one of the recently develop
We propose a generalized multiscale finite element method (GMsFEM) based on clustering algorithm to study the elliptic PDEs with random coefficients in the multi-query setting. Our method consists of offline and online stages. In the offline stage, w
In this paper we consider the approximation of functions by radial basis function interpolants. There is a plethora of results about the asymptotic behaviour of the error between appropriately smooth functions and their interpolants, as the interpola
This paper studies numerical methods for the approximation of elliptic PDEs with lognormal coefficients of the form $-{rm div}(a abla u)=f$ where $a=exp(b)$ and $b$ is a Gaussian random field. The approximant of the solution $u$ is an $n$-term polyno
Learning time-dependent partial differential equations (PDEs) that govern evolutionary observations is one of the core challenges for data-driven inference in many fields. In this work, we propose to capture the essential dynamics of numerically chal