ﻻ يوجد ملخص باللغة العربية
MnMX (M = Co or Ni, X = Si or Ge) alloys, experiencing structural transformation between Ni2In-type hexagonal and TiNiSi-type orthorhombic phases, attract considerable attention due to their potential applications as room-temperature solid refrigerants. Although lots of studies have been carried out on how to tune this transformation and obtain large entropy change in a wide temperature region, the crystallography of this martensitic transformation is still unknown. The biggest obstacle for crystallography investigation is to obtain a bulk sample, in which hexagonal and orthorhombic phases coexist, because the MnMX alloys will fragment into powders after experiencing the transformation. For this reason, we carefully tune the transformation temperature to be slightly below 300 K. In that case, a bulk sample with small amounts of orthorhombic phases distributed in hexagonal matrix is obtained. Most importantly, there are no cracks between the two phases. It facilities us to investigate the microstructure using electron microscope. The obtained results indicate that the orientation relationship between hexagonal and orthorhombic structures is [4-2-23]h//[120]o & (01-10)h//(001)o and the habit plane is {-2113.26}h. WLR theory is also adopted to calculate the habit plane. The calculated result agrees well with the measured one. Our work reveals the crystallography of hexagonal-orthorhombic transformation for the first time and is helpful for understanding the transformation-associated physical effects in MnMX alloys.
Using classical molecular dynamics simulations, we study austenite to ferrite phase transformation in iron, focusing on the role of interface morphology. We compare two different morphologies; a textit{flat} interface in which the two phases are join
The onset and kinetics of martensitic transformations are controlled by impurities trapped during the transformation. For the alpha to omega transformation in Ti, ab initio methods yield the changes in both the relative stability of and energy barrie
High-throughput calculations are a very promising tool for screening a large number of compounds in order to discover new useful materials. Ternary intermetallic are thus investigated in the present work to find new compounds potentially interesting
This papers deals with overall phase transformation kinetics. The Fokker-Planck type equation is derived from the generalized nucleation theory proposed by Binder and Stauffer. Existence of the steady state solution is shown by a method based on the
We propose a mathematical description of crystal structure: underlying translational periodicity together with the distinct atomic positions up to the symmetry operations in the unit cell. It is consistent with the international table of crystallogra