ﻻ يوجد ملخص باللغة العربية
Using classical molecular dynamics simulations, we study austenite to ferrite phase transformation in iron, focusing on the role of interface morphology. We compare two different morphologies; a textit{flat} interface in which the two phases are joined according to Nishiyama-Wasserman orientation relationship vs. a textit{ledged} one, having steps similar to the vicinal surface. We identify the atomic displacements along a misfit dislocation network at the interface leading to the phase transformation. In case of textit{ledged} interface, stacking faults are nucleated at the steps, which hinder the interface motion, leading to a lower mobility of the inter-phase boundary, than that of flat interface. Interestingly, we also find the temperature dependence of the interface mobility to show opposite trends in case of textit{flat} vs. textit{ledged} boundary. We believe that our study is going to present a unified and comprehensive view of martensitic transformation in iron with different interface morphology, which is lacking at present, as textit{flat} and textit{ledged} interfaces are treated separately in the existing literature.
The onset and kinetics of martensitic transformations are controlled by impurities trapped during the transformation. For the alpha to omega transformation in Ti, ab initio methods yield the changes in both the relative stability of and energy barrie
A class of Fe--Mn--Si-based alloys exhibit a reversible martensitic transformation between the $gamma$ phase with a face-centered cubic~($fcc$) and an $epsilon$ phase with a hexagonal close-packed ($hcp$) structure. During the deformation-induced $ga
We propose a mathematical description of crystal structure: underlying translational periodicity together with the distinct atomic positions up to the symmetry operations in the unit cell. It is consistent with the international table of crystallogra
MnMX (M = Co or Ni, X = Si or Ge) alloys, experiencing structural transformation between Ni2In-type hexagonal and TiNiSi-type orthorhombic phases, attract considerable attention due to their potential applications as room-temperature solid refrigeran
It is shown that a temperature window between the Curie temperatures of martensite and austenite phases around the room temperature can be obtained by a vacancy-tuning strategy in Mn-poor Mn1-xCoGe alloys (0 <= x <= 0.050). Based on this, a martensit