ﻻ يوجد ملخص باللغة العربية
Despite decades of practice, finite-size errors in many widely used electronic structure theories for periodic systems remain poorly understood. For periodic systems using a general Monkhorst-Pack grid, there has been no rigorous analysis of the finite-size error in the Hartree-Fock theory (HF) and the second order M{o}ller-Plesset perturbation theory (MP2), which are the simplest wavefunction based method, and the simplest post-Hartree-Fock method, respectively. Such calculations can be viewed as a multi-dimensional integral discretized with certain trapezoidal rules. Due to the Coulomb singularity, the integrand has many points of discontinuity in general, and standard error analysis based on the Euler-Maclaurin formula gives overly pessimistic results. The lack of analytic understanding of finite-size errors also impedes the development of effective finite-size correction schemes. We propose a unified method to obtain sharp convergence rates of finite-size errors for the periodic HF and MP2 theories. Our main technical advancement is a generalization of the result of [Lyness, 1976] for obtaining sharp convergence rates of the trapezoidal rule for a class of non-smooth integrands. Our result is applicable to three-dimensional bulk systems as well as low dimensional systems (such as nanowires and 2D materials). Our unified analysis also allows us to prove the effectiveness of the Madelung-constant correction to the Fock exchange energy, and the effectiveness of a recently proposed staggered mesh method for periodic MP2 calculations [Xing, Li, Lin, 2021]. Our analysis connects the effectiveness of the staggered mesh method with integrands with removable singularities, and suggests a new staggered mesh method for reducing finite-size errors of periodic HF calculations.
The calculation of the MP2 correlation energy for extended systems can be viewed as a multi-dimensional integral in the thermodynamic limit, and the standard method for evaluating the MP2 energy can be viewed as a trapezoidal quadrature scheme. We de
In quantum chemistry, obtaining a systems mean-field solution and incorporating electron correlation in a post Hartree-Fock (HF) manner comprise one of the standard protocols for ground-state calculations. In principle, this scheme can also describe
We report on a formulation and implementation of a scheme to compute NMR shieldings at second-order Moller-Plesset (MP2) perturbation theory using gauge-including atomic orbitals (GIAOs) to ensure gauge-origin independence and Cholesky decomposition
We investigate the order-by-order convergence behavior of many-body perturbation theory (MBPT) as a simple and efficient tool to approximate the ground-state energy of closed-shell nuclei. To address the convergence properties directly, we explore pe
This work presents an algorithm to evaluate Coulomb and exchange matrices in Fock operator using range separation techniques at various aspects. This algorithm is particularly favorable for the scenario of (1) all-electron calculations or (2) computi