ترغب بنشر مسار تعليمي؟ اضغط هنا

Staggered mesh method for correlation energy calculations of solids: Second order M{o}ller-Plesset perturbation theory

196   0   0.0 ( 0 )
 نشر من قبل Xin Xing
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

The calculation of the MP2 correlation energy for extended systems can be viewed as a multi-dimensional integral in the thermodynamic limit, and the standard method for evaluating the MP2 energy can be viewed as a trapezoidal quadrature scheme. We demonstrate that existing analysis neglects certain contributions due to the non-smoothness of the integrand, and may significantly underestimate finite-size errors. We propose a new staggered mesh method, which uses two staggered Monkhorst-Pack meshes for occupied and virtual orbitals, respectively, to compute the MP2 energy. The staggered mesh method circumvents a significant error source in the standard method, in which certain quadrature nodes are always placed on points where the integrand is discontinuous. One significant advantage of the proposed method is that there are no tunable parameters, and the additional numerical effort needed can be negligible compared to the standard MP2 calculation. Numerical results indicate that the staggered mesh method can be particularly advantageous for quasi-1D systems, as well as quasi-2D and 3D systems with certain symmetries.



قيم البحث

اقرأ أيضاً

95 - Xin Xing , Xiaoxu Li , Lin Lin 2021
Despite decades of practice, finite-size errors in many widely used electronic structure theories for periodic systems remain poorly understood. For periodic systems using a general Monkhorst-Pack grid, there has been no rigorous analysis of the fini te-size error in the Hartree-Fock theory (HF) and the second order M{o}ller-Plesset perturbation theory (MP2), which are the simplest wavefunction based method, and the simplest post-Hartree-Fock method, respectively. Such calculations can be viewed as a multi-dimensional integral discretized with certain trapezoidal rules. Due to the Coulomb singularity, the integrand has many points of discontinuity in general, and standard error analysis based on the Euler-Maclaurin formula gives overly pessimistic results. The lack of analytic understanding of finite-size errors also impedes the development of effective finite-size correction schemes. We propose a unified method to obtain sharp convergence rates of finite-size errors for the periodic HF and MP2 theories. Our main technical advancement is a generalization of the result of [Lyness, 1976] for obtaining sharp convergence rates of the trapezoidal rule for a class of non-smooth integrands. Our result is applicable to three-dimensional bulk systems as well as low dimensional systems (such as nanowires and 2D materials). Our unified analysis also allows us to prove the effectiveness of the Madelung-constant correction to the Fock exchange energy, and the effectiveness of a recently proposed staggered mesh method for periodic MP2 calculations [Xing, Li, Lin, 2021]. Our analysis connects the effectiveness of the staggered mesh method with integrands with removable singularities, and suggests a new staggered mesh method for reducing finite-size errors of periodic HF calculations.
In quantum chemistry, obtaining a systems mean-field solution and incorporating electron correlation in a post Hartree-Fock (HF) manner comprise one of the standard protocols for ground-state calculations. In principle, this scheme can also describe excited states but is not widely used at present, primarily due to the difficulty of locating the mean-field excited states. With recent developments in excited-state orbital relaxation, self-consistent excited-state solutions can now be located routinely at various levels of theory. In this work, we explore the possibility of correcting HF excited states using M{o}ller-Plesset perturbation theory to the second order. Among various PT2 variants, we find that the restricted open-shell MP2 (ROMP2) gives excitation energies comparable to the best density functional theory results, delivering $sim 0.2$ eV mean unsigned error over a wide range of single-configuration state function excitations, at only non-iterative $O(N^5)$ computational scaling.
We report on a formulation and implementation of a scheme to compute NMR shieldings at second-order Moller-Plesset (MP2) perturbation theory using gauge-including atomic orbitals (GIAOs) to ensure gauge-origin independence and Cholesky decomposition (CD) to handle unperturbed as well as perturbed two-electron integrals. We investigate the accuracy of the CD for the derivatives of the two-electron integrals with respect to an external magnetic field as well as for the computed NMR shieldings, before we illustrate the applicability of our CD based GIAO-MP2 scheme in calculations involving up to about one hundred atoms and more than one thousand basis functions.
We present the results of our perturbative calculations of the static quark potential, small Wilson loops, the static quark self energy, and the mean link in Landau gauge. These calculations are done for the one loop Symanzik improved gluon action, and the improved staggered quark action.
503 - Zeng-hui Yang 2021
We derive the second-order approximation (PT2) to the ensemble correlation energy functional by applying the G{o}rling-Levy perturbation theory on the ensemble density-functional theory (EDFT). Its performance is checked by calculating excitation ene rgies with the direct ensemble correction method in 1D model systems and 3D atoms using numerically exact Kohn-Sham orbitals and potentials. Comparing with the exchange-only approximation, the inclusion of the ensemble PT2 correlation improves the excitation energies in 1D model systems in most cases, including double excitations and charge-transfer excitations. However, the excitation energies for atoms are generally worse with PT2. We find that the failure of PT2 in atoms is due to the two contributions of an orbital-dependent functional to excitation energies being inconsistent in the calculations. We also analyze the convergence of PT2 excitation energies with respect to the number of unoccupied orbitals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا