ﻻ يوجد ملخص باللغة العربية
In quantum chemistry, obtaining a systems mean-field solution and incorporating electron correlation in a post Hartree-Fock (HF) manner comprise one of the standard protocols for ground-state calculations. In principle, this scheme can also describe excited states but is not widely used at present, primarily due to the difficulty of locating the mean-field excited states. With recent developments in excited-state orbital relaxation, self-consistent excited-state solutions can now be located routinely at various levels of theory. In this work, we explore the possibility of correcting HF excited states using M{o}ller-Plesset perturbation theory to the second order. Among various PT2 variants, we find that the restricted open-shell MP2 (ROMP2) gives excitation energies comparable to the best density functional theory results, delivering $sim 0.2$ eV mean unsigned error over a wide range of single-configuration state function excitations, at only non-iterative $O(N^5)$ computational scaling.
The calculation of the MP2 correlation energy for extended systems can be viewed as a multi-dimensional integral in the thermodynamic limit, and the standard method for evaluating the MP2 energy can be viewed as a trapezoidal quadrature scheme. We de
Despite decades of practice, finite-size errors in many widely used electronic structure theories for periodic systems remain poorly understood. For periodic systems using a general Monkhorst-Pack grid, there has been no rigorous analysis of the fini
We report on a formulation and implementation of a scheme to compute NMR shieldings at second-order Moller-Plesset (MP2) perturbation theory using gauge-including atomic orbitals (GIAOs) to ensure gauge-origin independence and Cholesky decomposition
We show that by working in a basis similar to that of the natural transition orbitals and using a modified zeroth order Hamiltonian, the cost of a recently-introduced perturbative correction to excited state mean field theory can be reduced from seve
We present a linear-response formulation of density cumulant theory (DCT) that provides a balanced and accurate description of many electronic states simultaneously. In the original DCT formulation, only information about a single electronic state (u