ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark soliton detection using persistent homology

94   0   0.0 ( 0 )
 نشر من قبل Daniel Leykam
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Classifying experimental image data often requires manual identification of qualitative features, which is difficult to automate. Existing automated approaches based on deep convolutional neural networks can achieve accuracy comparable to human classifiers, but require extensive training data and computational resources. Here we show that the emerging framework of topological data analysis can be used to rapidly and reliably identify qualitative features in image data, enabling their classification using easily-interpretable linear models. Specifically, we consider the task of identifying dark solitons using a freely-available dataset of 6257 labelled Bose-Einstein condensate (BEC) density images. We use point summaries of the images topological features -- their persistent entropy and lifetime $p$-norms -- to train logistic regression models. The models attain performance comparable to neural networks using a fraction of the training data, classifying images 30 times faster.



قيم البحث

اقرأ أيضاً

The machine learning technique of persistent homology classifies complex systems or datasets by computing their topological features over a range of characteristic scales. There is growing interest in applying persistent homology to characterize phys ical systems such as spin models and multiqubit entangled states. Here we propose persistent homology as a tool for characterizing and optimizing band structures of periodic photonic media. Using the honeycomb photonic lattice Haldane model as an example, we show how persistent homology is able to reliably classify a variety of band structures falling outside the usual paradigms of topological band theory, including moat band and multi-valley dispersion relations, and thereby control the properties of quantum emitters embedded in the lattice. The method is promising for the automated design of more complex systems such as photonic crystals and Moire superlattices.
We introduce a method for training neural networks to perform image or volume segmentation in which prior knowledge about the topology of the segmented object can be explicitly provided and then incorporated into the training process. By using the di fferentiable properties of persistent homology, a concept used in topological data analysis, we can specify the desired topology of segmented objects in terms of their Betti numbers and then drive the proposed segmentations to contain the specified topological features. Importantly this process does not require any ground-truth labels, just prior knowledge of the topology of the structure being segmented. We demonstrate our approach in three experiments. Firstly we create a synthetic task in which handwritten MNIST digits are de-noised, and show that using this kind of topological prior knowledge in the training of the network significantly improves the quality of the de-noised digits. Secondly we perform an experiment in which the task is segmenting the myocardium of the left ventricle from cardiac magnetic resonance images. We show that the incorporation of the prior knowledge of the topology of this anatomy improves the resulting segmentations in terms of both the topological accuracy and the Dice coefficient. Thirdly, we extend the method to 3D volumes and demonstrate its performance on the task of segmenting the placenta from ultrasound data, again showing that incorporating topological priors improves performance on this challenging task. We find that embedding explicit prior knowledge in neural network segmentation tasks is most beneficial when the segmentation task is especially challenging and that it can be used in either a semi-supervised or post-processing context to extract a useful training gradient from images without pixelwise labels.
We apply persistent homology to the task of discovering and characterizing phase transitions, using lattice spin models from statistical physics for working examples. Persistence images provide a useful representation of the homological data for cond ucting statistical tasks. To identify the phase transitions, a simple logistic regression on these images is sufficient for the models we consider, and interpretable order parameters are then read from the weights of the regression. Magnetization, frustration and vortex-antivortex structure are identified as relevant features for characterizing phase transitions.
We introduce a homology-based technique for the analysis of multiqubit state vectors. In our approach, we associate state vectors to data sets by introducing a metric-like measure in terms of bipartite entanglement, and investigate the persistence of homologies at different scales. This leads to a novel classification of multiqubit entanglement. The relative occurrence frequency of various classes of entangled states is also shown.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا