ترغب بنشر مسار تعليمي؟ اضغط هنا

Persistent homology analysis of multiqubit entanglement

96   0   0.0 ( 0 )
 نشر من قبل Riccardo Mengoni
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a homology-based technique for the analysis of multiqubit state vectors. In our approach, we associate state vectors to data sets by introducing a metric-like measure in terms of bipartite entanglement, and investigate the persistence of homologies at different scales. This leads to a novel classification of multiqubit entanglement. The relative occurrence frequency of various classes of entangled states is also shown.



قيم البحث

اقرأ أيضاً

We derive the relationship between the persistent homology barcodes of two dual filtered CW complexes. Applied to greyscale digital images, we obtain an algorithm to convert barcodes between the two different (dual) topological models of pixel connectivity.
146 - Lin Chen , Yi-Xin Chen 2007
We introduce a feasible method of constructing the entanglement witness that detects the genuine entanglement of a given pure multiqubit state. We illustrate our method in the scenario of constructing the witnesses for the multiqubit states that are broadly theoretically and experimentally investigated. It is shown that our method can construct the effective witnesses for experiments. We also investigate the entanglement detection of symmetric states and mixed states.
Monogamy and polygamy relations characterize the distributions of entanglement in multipartite systems. We provide classes of monogamy and polygamy inequalities of multiqubit entanglement in terms of concurrence, entanglement of formation, negativity , Tsallis-$q$ entanglement and R{e}nyi-$alpha$ entanglement, respectively. We show that these inequalities are tighter than the existing ones for some classes of quantum states.
200 - Patrizio Frosini 2010
The present lack of a stable method to compare persistent homology groups with torsion is a relevant problem in current research about Persistent Homology and its applications in Pattern Recognition. In this paper we introduce a pseudo-distance d_T t hat represents a possible solution to this problem. Indeed, d_T is a pseudo-distance between multidimensional persistent homology groups with coefficients in an Abelian group, hence possibly having torsion. Our main theorem proves the stability of the new pseudo-distance with respect to the change of the filtering function, expressed both with respect to the max-norm and to the natural pseudo-distance between topological spaces endowed with vector-valued filtering functions. Furthermore, we prove a result showing the relationship between d_T and the matching distance in the 1-dimensional case, when the homology coefficients are taken in a field and hence the comparison can be made.
249 - Woojin Kim , Facundo Memoli 2018
Characterizing the dynamics of time-evolving data within the framework of topological data analysis (TDA) has been attracting increasingly more attention. Popular instances of time-evolving data include flocking/swarming behaviors in animals and soci al networks in the human sphere. A natural mathematical model for such collective behaviors is a dynamic point cloud, or more generally a dynamic metric space (DMS). In this paper we extend the Rips filtration stability result for (static) metric spaces to the setting of DMSs. We do this by devising a certain three-parameter spatiotemporal filtration of a DMS. Applying the homology functor to this filtration gives rise to multidimensional persistence module derived from the DMS. We show that this multidimensional module enjoys stability under a suitable generalization of the Gromov-Hausdorff distance which permits metrizing the collection of all DMSs. On the other hand, it is recognized that, in general, comparing two multidimensional persistence modules leads to intractable computational problems. For the purpose of practical comparison of DMSs, we focus on both the rank invariant or the dimension function of the multidimensional persistence module that is derived from a DMS. We specifically propose to utilize a certain metric d for comparing these invariants: In our work this d is either (1) a certain generalization of the erosion distance by Patel, or (2) a specialized version of the well known interleaving distance. We also study the computational complexity associated to both choices of d.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا