ترغب بنشر مسار تعليمي؟ اضغط هنا

Models of Hidden Purity

132   0   0.0 ( 0 )
 نشر من قبل Frank Wilczek
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Frank Wilczek




اسأل ChatGPT حول البحث

I extend, apply, and generalize a model of a quantum radiator proposed by Griffiths to construct models of radiation fields that exhibit high entropy for long periods of time but approach pure states asymptotically. The models, which are fully consistent with the basic principles of quantum theory, provide coarse-grained models of both realistic physical systems and exotic space-times including black and white holes and baby and prodigal universes. Their analysis suggests experimental probes of some basic but subtle implications of quantum theory including interference between a particle and its own past, influence of quantum statistical entanglement on entropy flow, and residual entanglement connecting distant radiation with a degenerate source.



قيم البحث

اقرأ أيضاً

Bells theorem implies that any completion of quantum mechanics which uses hidden variables (that is, preexisting values of all observables) must be nonlocal in the Einstein sense. This customarily indicates that knowledge of the hidden variables woul d permit superluminal communication. Such superluminal signaling, akin to the existence of a preferred reference frame, is to be expected. However, here we provide a protocol that allows an observer with knowledge of the hidden variables to communicate with her own causal past, without superluminal signaling. That is, such knowledge would contradict causality, irrespectively of the validity of relativity theory. Among the ways we propose for bypassing the paradox there is the possibility of hidden variables that change their values even when the state does not, and that means that signaling backwards in time is prohibited in Bohmian mechanics.
We list all 97 pairs (almost affine Lie superalgebra, its desuperization = a hyperbolic Lie algebra). Several (18 of the total 66) hyperbolic Lie algebras have multiple superizations. The tracks of cosmological billiards corresponding to these pairs are the same.
We analyze LHC data in order to constrain the parameter space of new spin-2 particles universally coupled to the energy-momentum tensor. These new hypothetical particles are the so-called hidden gravitons, whose phenomenology at low energies is deter mined by two parameters: its mass and its dimensional coupling constant. Hidden gravitons arise in many different extensions of the Standard Model of particles and interactions and General Relativity. Their phenomenology has been studied mainly in relation to modifications of gravity and astrophysical signatures. In this work, we extend the constraints for heavy hidden gravitons, with masses larger than $1$ GeV, by taking into account events collected by ATLAS and CMS in the WW channel, Drell-Yan processes, and the diphoton channel from proton-proton collisions at $sqrt{s}=8$ TeV.
Quantum mechanics is an extremely successful theory that agrees with every experiment. However, the principle of linear superposition, a central tenet of the theory, apparently contradicts a commonplace observation: macroscopic objects are never foun d in a linear superposition of position states. Moreover, the theory does not really explain as to why during a quantum measurement, deterministic evolution is replaced by probabilistic evolution, whose random outcomes obey the Born probability rule. In this article we review an experimentally falsifiable phenomenological proposal, known as Continuous Spontaneous Collapse: a stochastic non-linear modification of the Schr{o}dinger equation, which resolves these problems, while giving the same experimental results as quantum theory in the microscopic regime. Two underlying theories for this phenomenology are reviewed: Trace Dynamics, and gravity induced collapse. As one approaches the macroscopic scale, the predictions of this proposal begin to differ appreciably from those of quantum theory, and are being confronted by ongoing laboratory experiments that include molecular interferometry and optomechanics. These experiments, which essentially test the validity of linear superposition for large systems, are reviewed here, and their technical challenges, current results, and future prospects summarized. We conclude that it is likely that over the next two decades or so, these experiments can verify or rule out the proposed stochastic modification of quantum theory.
We demonstrate the application of pattern recognition algorithms via hidden Markov models (HMM) for qubit readout. This scheme provides a state-path trajectory approach capable of detecting qubit state transitions and makes for a robust classificatio n scheme with higher starting state assignment fidelity than when compared to a multivariate Gaussian (MVG) or a support vector machine (SVM) scheme. Therefore, the method also eliminates the qubit-dependent readout time optimization requirement in current schemes. Using a HMM state discriminator we estimate fidelities reaching the ideal limit. Unsupervised learning gives access to transition matrix, priors, and IQ distributions, providing a toolbox for studying qubit state dynamics during strong projective readout.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا