ﻻ يوجد ملخص باللغة العربية
We demonstrate the application of pattern recognition algorithms via hidden Markov models (HMM) for qubit readout. This scheme provides a state-path trajectory approach capable of detecting qubit state transitions and makes for a robust classification scheme with higher starting state assignment fidelity than when compared to a multivariate Gaussian (MVG) or a support vector machine (SVM) scheme. Therefore, the method also eliminates the qubit-dependent readout time optimization requirement in current schemes. Using a HMM state discriminator we estimate fidelities reaching the ideal limit. Unsupervised learning gives access to transition matrix, priors, and IQ distributions, providing a toolbox for studying qubit state dynamics during strong projective readout.
Near term quantum computers suffer from the presence of different noise sources. In order to mitigate for this effect and acquire results with significantly better accuracy, there is the urge of designing efficient error correction or error mitigatio
In dispersive readout schemes, qubit-induced nonlinearity typically limits the measurement fidelity by reducing the signal-to-noise ratio (SNR) when the measurement power is increased. Contrary to seeing the nonlinearity as a problem, here we propose
In unsupervised classification, Hidden Markov Models (HMM) are used to account for a neighborhood structure between observations. The emission distributions are often supposed to belong to some parametric family. In this paper, a semiparametric model
Continuous-variable cluster states (CVCSs) can be supplemented with Gottesman-Kitaev-Preskill (GKP) states to form a hybrid cluster state with the power to execute universal, fault-tolerant quantum computing in a measurement-based fashion. As the res
Hidden Markov Models (HMMs) are learning methods for pattern recognition. The probabilistic HMMs have been one of the most used techniques based on the Bayesian model. First-order probabilistic HMMs were adapted to the theory of belief functions such