ﻻ يوجد ملخص باللغة العربية
Quantum mechanics is an extremely successful theory that agrees with every experiment. However, the principle of linear superposition, a central tenet of the theory, apparently contradicts a commonplace observation: macroscopic objects are never found in a linear superposition of position states. Moreover, the theory does not really explain as to why during a quantum measurement, deterministic evolution is replaced by probabilistic evolution, whose random outcomes obey the Born probability rule. In this article we review an experimentally falsifiable phenomenological proposal, known as Continuous Spontaneous Collapse: a stochastic non-linear modification of the Schr{o}dinger equation, which resolves these problems, while giving the same experimental results as quantum theory in the microscopic regime. Two underlying theories for this phenomenology are reviewed: Trace Dynamics, and gravity induced collapse. As one approaches the macroscopic scale, the predictions of this proposal begin to differ appreciably from those of quantum theory, and are being confronted by ongoing laboratory experiments that include molecular interferometry and optomechanics. These experiments, which essentially test the validity of linear superposition for large systems, are reviewed here, and their technical challenges, current results, and future prospects summarized. We conclude that it is likely that over the next two decades or so, these experiments can verify or rule out the proposed stochastic modification of quantum theory.
Erik Verlindes theory of entropic gravity [arXiv:1001.0785], postulating that gravity is not a fundamental force but rather emerges thermodynamically, has garnered much attention as a possible resolution to the quantum gravity problem. Some have rule
Spontaneous collapse models and Bohmian mechanics are two different solutions to the measurement problem plaguing orthodox quantum mechanics. They have a priori nothing in common. At a formal level, collapse models add a non-linear noise term to the
We identify points of difference between Invariant Set Theory and standard quantum theory, and evaluate if these would lead to noticeable differences in predictions between the two theories. From this evaluation, we design a number of experiments, wh
The assumption that wave function collapse is induced by the interactions that generate decoherence leads to a stochastic collapse equation that does not require the introduction of any new physical constants and that is consistent with conservation
The Transactional Interpretation of quantum mechanics exploits the intrinsic time-symmetry of wave mechanics to interpret the $psi$ and $psi$* wave functions present in all wave mechanics calculations as representing retarded and advanced waves movin