ترغب بنشر مسار تعليمي؟ اضغط هنا

On guided circumferential waves in soft electroactive tubes under radially inhomogeneous biasing fields

136   0   0.0 ( 0 )
 نشر من قبل Bin Wu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we present an analysis of the guided circumferential elastic waves in soft EA tube actuators, which has potential applications in the in-situ non-destructive evaluation or online structural health monitoring (SHM) to detect structural defects or fatigue cracks in soft EA tube actuators and in the self-sensing of soft EA tube actuators based on the concept of guided circumferential elastic waves. Both circumferential SH and Lamb-type waves in an incompressible soft EA cylindrical tube under inhomogeneous biasing fields are considered. The biasing fields, induced by the application of an electric voltage difference to the electrodes on the inner and outer cylindrical surfaces of the EA tube in addition to an axial pre-stretch, are inhomogeneous in the radial direction. Dorfmann and Ogdens theory of nonlinear electroelasticity and the associated linear theory for small incremental motion constitute the basis of our analysis. By means of the state-space formalism for the incremental wave motion along with the approximate laminate technique, dispersion relations are derived in a particularly efficient way. For a neo-Hookean ideal dielectric model, the proposed approach is first validated numerically. Numerical examples are then given to show that the guided circumferential wave propagation characteristics are significantly affected by the inhomogeneous biasing fields and the geometrical parameters. Some particular phenomena such as the frequency veering and the nonlinear dependence of the phase velocity on the radial electric voltage are discussed. Our numerical findings demonstrate that it is feasible to use guided circumferential elastic waves for the ultrasonic non-destructive online SHM to detect interior structural defects or fatigue cracks and for the self-sensing of the actual state of the soft EA tube actuator.



قيم البحث

اقرأ أيضاً

128 - Dominic Emery , Yibin Fu 2021
We provide an extension to previous analysis of the localised beading instability of soft slender tubes under surface tension and axial stretching. The primary questions pondered here are: under what loading conditions, if any, can bifurcation into c ircumferential buckling modes occur, and do such solutions dominate localisation and periodic axial modes? Three distinct boundary conditions are considered; in case 1 the tubes curved surfaces are traction free and under surface tension, whilst in cases 2 and 3 the inner and outer surfaces (respectively) are fixed to prevent radial displacement and surface tension. A linear bifurcation analysis is conducted to determine numerically the existence of circumferential mode solutions. In case 1 we focus on the tensile stress regime given the preference of slender compressed tubes towards Euler buckling over axial wrinkling. We show that tubes under several loading paths are highly sensitive to circumferential modes; in contrast, localised and periodic axial modes are absent, suggesting that the circumferential buckling is dominant by default. In case 2, circumferential mode solutions are associated with negative surface tension values and thus are physically implausible. Circumferential buckling solutions are shown to exist in case 3 for tensile and compressive axial loads, and we demonstrate for multiple loading scenarios their dominance over localisation and periodic axial modes within specific parameter regimes.
In vivo measurement of the mechanical properties of thin-walled soft tissues (e.g., mitral valve, artery and bladder) and in situ mechanical characterization of thin-walled artificial soft biomaterials in service are of great challenge and difficult to address via commonly used testing methods. Here we investigate the properties of guided waves generated by focused acoustic radiation force in immersed pre-stressed plates and tubes, and show that they can address this challenge. To this end, we carry out both (i) a theoretical analysis based on incremental wave motion in finite deformation theory and (ii) finite element simulations. Our analysis leads to a novel method based on the ultrasound elastography to image the elastic properties of pre-stressed thin-walled soft tissues and artificial soft materials in a non-destructive and non-invasive manner. To validate the theoretical and numerical solutions and demonstrate the usefulness of the corresponding method in practical measurements, we perform (iii) experiments on polyvinyl alcohol cryogel phantoms immersed in water, using the Verasonics V1 System equipped with a L10-5 transducer. Finally, potential clinical applications of the method have been discussed.
67 - Dominic Emery , Yibin Fu 2021
We investigate localised bulging or necking in an incompressible, hyperelastic cylindrical tube under axial stretching and surface tension. Three cases are considered in which the tube is subjected to different constraints. In case 1 the inner and ou ter surfaces are traction-free and under surface tension, whilst in cases 2 and 3 the inner and outer surfaces (respectively) are fixed to prevent radial displacement and surface tension. However, each free surface in these latter two cases is still under surface tension. We first state the analytical bifurcation conditions for localisation and then validate them numerically whilst determining whether localisation is preferred over bifurcation into periodic modes. It is shown that bifurcation into a localised solution is unattainable in case 1 but possible and favourable in cases 2 and 3. In contrast, in case 1 any bifurcation must necessarily take the form of a periodic mode with a non-zero wave number. Our results are validated using Finite Element Method (FEM) simulations.
160 - Ning Wu , Wen-Long You 2019
We study the emergence of exact Majorana zero modes (EMZMs) in a one-dimensional quantum transverse compass model with both the nearest-neighbor interactions and transverse fields varying over space. By transforming the spin system into a quadratic M ajorana-fermion model, we derive an exact formula for the number of the emergent EMZMs, which is found to depend on the partition nature of the lattice sites on which the magnetic fields vanish. We also derive explicit expressions for the wavefunctions of these EMZMs and show that they indeed depend on fine features of the foregoing partition of site indices. Based on the above rigorous results about the EMZMs, we provide an interpretation for the interesting dependence of the eigenstate-degeneracy on the transverse fields observed in prior literatures. As a special case, we employ a plane-wave ansatz to exactly solve an open compass chain with alternating nearest-neighbor interactions and staggered magnetic fields. Explicit forms of the canonical Majorana modes diagonalizing the model are given even for finite chains. We show that besides the possibly existing EMZMs, no almost Majorana zero modes exist unless the fields on both the two sublattices are turned off. Our results might shed light on the control of ground-state degeneracies by solely tuning the external fields in related systems.
110 - A. Petralia , F. Reale , P. Testa 2017
There is evidence for coronal plasma flows to break down into fragments and to be laminar. We investigate this effect by modeling flows confined along magnetic channels. We consider a full MHD model of a solar atmosphere box with a dipole magnetic fi eld. We compare the propagation of a cylindrical flow perfectly aligned to the field to that of another one with a slight misalignment. We assume a flow speed of 200 km/s, and an ambient magnetic field of 30 G. We find that while the aligned flow maintains its cylindrical symmetry while it travels along the magnetic tube, the misaligned one is rapidly squashed on one side, becoming laminar and eventually fragmented because of the interaction and backreaction of the magnetic field. This model could explain an observation of erupted fragments that fall back as thin and elongated strands and end up onto the solar surface in a hedge-like configuration, made by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. The initial alignment of plasma flow plays an important role in determining the possible laminar structure and fragmentation of flows while they travel along magnetic channels.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا