ﻻ يوجد ملخص باللغة العربية
We study the emergence of exact Majorana zero modes (EMZMs) in a one-dimensional quantum transverse compass model with both the nearest-neighbor interactions and transverse fields varying over space. By transforming the spin system into a quadratic Majorana-fermion model, we derive an exact formula for the number of the emergent EMZMs, which is found to depend on the partition nature of the lattice sites on which the magnetic fields vanish. We also derive explicit expressions for the wavefunctions of these EMZMs and show that they indeed depend on fine features of the foregoing partition of site indices. Based on the above rigorous results about the EMZMs, we provide an interpretation for the interesting dependence of the eigenstate-degeneracy on the transverse fields observed in prior literatures. As a special case, we employ a plane-wave ansatz to exactly solve an open compass chain with alternating nearest-neighbor interactions and staggered magnetic fields. Explicit forms of the canonical Majorana modes diagonalizing the model are given even for finite chains. We show that besides the possibly existing EMZMs, no almost Majorana zero modes exist unless the fields on both the two sublattices are turned off. Our results might shed light on the control of ground-state degeneracies by solely tuning the external fields in related systems.
I explicitly construct a strong zero mode in the XYZ chain or, equivalently, Majorana wires coupled via a four-fermion interaction. The strong zero mode is an operator that pairs states in different symmetry sectors, resulting in identical spectra up
We propose an alternative route to engineer Majorana zero modes (MZMs), which relies on inducing shift or spin vortex defects in magnetic textures which microscopically coexist or are in proximity to a superconductor. The present idea applies to a va
We prove that quantum information encoded in some topological excitations, including certain Majorana zero modes, is protected in closed systems for a time scale exponentially long in system parameters. This protection holds even at infinite temperat
We study interaction-induced localization of electrons in an inhomogeneous quasi-one-dimensional system--a wire with two regions, one at low density and the other high. Quantum Monte Carlo techniques are used to treat the strong Coulomb interactions
The quantum evolution after a metallic lead is suddenly connected to an electron system contains information about the excitation spectrum of the combined system. We exploit this type of quantum quench to probe the presence of Majorana fermions at th