ترغب بنشر مسار تعليمي؟ اضغط هنا

Guided waves in pre-stressed hyperelastic plates and tubes: Application to the ultrasound elastography of thin-walled soft materials

54   0   0.0 ( 0 )
 نشر من قبل Michel Destrade
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In vivo measurement of the mechanical properties of thin-walled soft tissues (e.g., mitral valve, artery and bladder) and in situ mechanical characterization of thin-walled artificial soft biomaterials in service are of great challenge and difficult to address via commonly used testing methods. Here we investigate the properties of guided waves generated by focused acoustic radiation force in immersed pre-stressed plates and tubes, and show that they can address this challenge. To this end, we carry out both (i) a theoretical analysis based on incremental wave motion in finite deformation theory and (ii) finite element simulations. Our analysis leads to a novel method based on the ultrasound elastography to image the elastic properties of pre-stressed thin-walled soft tissues and artificial soft materials in a non-destructive and non-invasive manner. To validate the theoretical and numerical solutions and demonstrate the usefulness of the corresponding method in practical measurements, we perform (iii) experiments on polyvinyl alcohol cryogel phantoms immersed in water, using the Verasonics V1 System equipped with a L10-5 transducer. Finally, potential clinical applications of the method have been discussed.



قيم البحث

اقرأ أيضاً

Surface waves play important roles in many fundamental and applied areas from seismic detection to material characterizations. Supershear surface waves with propagation speeds greater than bulk shear waves have recently been reported, but their prope rties are not well understood. In this Letter, we describe theoretical and experimental results on supershear surface waves in rubbery materials. We find that supershear surface waves can be supported in viscoelastic materials with no restriction on the shear quality factor. Interestingly, the effect of prestress on the speed of the supershear surface wave is opposite to that of the Rayleigh surface wave. Furthermore, anisotropy of material affects the supershear wave much more strongly than the Rayleigh surface wave. We offer heuristic interpretation as well as theoretical verification of our experimental observations. Our work points to the potential applications of supershear waves for characterizing the bulk mechanical properties of soft solid from the free surface.
135 - Bin Wu , Yipin Su , Weiqiu Chen 2021
In this paper, we present an analysis of the guided circumferential elastic waves in soft EA tube actuators, which has potential applications in the in-situ non-destructive evaluation or online structural health monitoring (SHM) to detect structural defects or fatigue cracks in soft EA tube actuators and in the self-sensing of soft EA tube actuators based on the concept of guided circumferential elastic waves. Both circumferential SH and Lamb-type waves in an incompressible soft EA cylindrical tube under inhomogeneous biasing fields are considered. The biasing fields, induced by the application of an electric voltage difference to the electrodes on the inner and outer cylindrical surfaces of the EA tube in addition to an axial pre-stretch, are inhomogeneous in the radial direction. Dorfmann and Ogdens theory of nonlinear electroelasticity and the associated linear theory for small incremental motion constitute the basis of our analysis. By means of the state-space formalism for the incremental wave motion along with the approximate laminate technique, dispersion relations are derived in a particularly efficient way. For a neo-Hookean ideal dielectric model, the proposed approach is first validated numerically. Numerical examples are then given to show that the guided circumferential wave propagation characteristics are significantly affected by the inhomogeneous biasing fields and the geometrical parameters. Some particular phenomena such as the frequency veering and the nonlinear dependence of the phase velocity on the radial electric voltage are discussed. Our numerical findings demonstrate that it is feasible to use guided circumferential elastic waves for the ultrasonic non-destructive online SHM to detect interior structural defects or fatigue cracks and for the self-sensing of the actual state of the soft EA tube actuator.
It is known that changes in the mechanical properties of tissues are associated with the onset and progression of certain diseases. Ultrasound elastography is a technique to characterize tissue stiffness using ultrasound imaging either by measuring t issue strain using quasi-static elastography or natural organ pulsation elastography, or by tracing a propagated shear wave induced by a source or a natural vibration using dynamic elastography. In recent years, deep learning has begun to emerge in ultrasound elastography research. In this review, several common deep learning frameworks in the computer vision community, such as multilayer perceptron, convolutional neural network, and recurrent neural network are described. Then, recent advances in ultrasound elastography using such deep learning techniques are revisited in terms of algorithm development and clinical diagnosis. Finally, the current challenges and future developments of deep learning in ultrasound elastography are prospected.
Modelling of mechanical behaviour of pre-stressed fibre-reinforced composites is considered in a geometrically exact setting. A general approach which includes two different reference configurations is employed: one configuration corresponds to the l oad-free state of the structure and another one to the stress-free state of each material particle. The applicability of the approach is demonstrated in terms of a viscoelastic material model; both the matrix and the fibre are modelled using a multiplicative split of the deformation gradient tensor; a transformation rule for initial conditions is elaborated and specified. Apart from its simplicity, an important advantage of the approach is that well-established numerical algorithms can be used for pre-stressed inelastic structures. The interrelation between the advocated approach and the widely used opening angle approach is clarified. A full-scale FEM simulation confirms the main predictions of the opening angle approach. A locking effect is discovered; the effect is that in some cases the opening angle of the composite is essentially smaller than the opening angles of its individual layers. Thus, the standard cutting test typically used to analyse pre-stresses does not carry enough information and more refined experimental techniques are needed.
122 - Xiang Yu , Yibin Fu , Hui-Hui Dai 2021
A refined dynamic finite-strain shell theory for incompressible hyperelastic materials was developed by the authors recently. In this paper, we first derive the associated linearized incremental theory, and then use it to investigate wave propagation in a fiber-reinforced hyperelastic tube that is subjected to an axial pre-stretch and internal pressure. We obtain the dispersion relations for both axisymmetric and non-axisymmetric waves and discuss their accuracy by comparing them with the exact dispersion relations. The bending effect is also examined by comparing the dispersion curves based on the present theory and membrane theory, respectively. It is shown that the present theory is more accurate than the membrane theory in studying wave propagation and the bending effect plays an important role in some wave modes for relatively large wavenumbers. The effects of the pressure, axial pre-stretch and fiber angle on the dispersion relations are displayed. These results provide a theoretical foundation for wave propagation in arteries, which can be used to determine arterial properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا