ﻻ يوجد ملخص باللغة العربية
Mucus is a viscoelastic gel secreted by the pulmonary epithelium in the tracheobronchial region of the lungs. The coordinated beating of cilia moves mucus upwards towards pharynx, removing inhaled pathogens and particles from the airways. The efficacy of this clearance mechanism depends primarily on the rheological properties of mucus. Here we use magnetic wire based microrheology to study the viscoelastic properties of human mucus collected from human bronchus tubes. The response of wires between 5 and 80 microns in length to a rotating magnetic field is monitored by optical time-lapse microscopy and analyzed using constitutive equations of rheology, including those of Maxwell and Kelvin-Voigt. The static shear viscosity and elastic modulus can be inferred from low frequency (from 0.003 to 30 rad s-1) measurements, leading to the evaluation of the mucin network relaxation time. This relaxation time is found to be widely distributed, from one to several hundred seconds. Mucus is identified as a viscoelastic liquid with an elastic modulus of 2.5 +/- 0.5 Pa and a static viscosity of 100 +/- 40 Pa s. Our work shows that beyond the established spatial variations in rheological properties due to microcavities, mucus exhibits secondary inhomogeneities associated with the relaxation time of the mucin network that may be important for its flow properties.
We have simulated the motion of a bead subjected to a constant force while embedded in a network of semiflexible polymers which can represent actin filaments. We find that the bead displacement obeys the power law x ~ t^alfa. After the initial stage
Recent studies have shown that bacterial nucleoid-associated proteins (NAPs) can bind to DNA and result in altered structural organization and bridging interactions. Under spontaneous self-assembly, NAPs may form anisotropic amyloid fibers, whose eff
Soft solids like colloidal glasses exhibit a yield stress, above which the system starts to flow. The microscopic analogon in microrheology is the delocalization of a tracer particle subject to an external force exceeding a threshold value, in a glas
We analyze the dynamics of a tracer particle embedded in a bath of hard spheres confined in a channel of varying section. By means of Brownian dynamics simulations we apply a constant force on the tracer particle and discuss the dependence of its mob
The glass transition remains unclarified in condensed matter physics. Investigating the mechanical properties of glass is challenging because any global deformation that may result in shear rejuvenation requires an astronomical relaxation time. Moreo