ﻻ يوجد ملخص باللغة العربية
Recent studies have shown that bacterial nucleoid-associated proteins (NAPs) can bind to DNA and result in altered structural organization and bridging interactions. Under spontaneous self-assembly, NAPs may form anisotropic amyloid fibers, whose effects are still more significant on DNA dynamics. To test this hypothesis, microrheology experiments on dispersions of DNA associated with the amyloid terminal domain (CTR) of the bacterial protein Hfq were performed using the technique of magnetic rotational spectroscopy (MRS). In this chapter, we survey this microrheology technique which is based on the remote actuation of magnetic wires embedded in a sample. MRS is interesting as it is easy to implement, and does not require complex procedures regarding data treatment. Pertaining to the interaction between DNA and amyloid fibers, it is found that DNA and Hfq-CTR protein dispersion behave like a gel, an outcome that suggests the formation of a network of amyloid fibers cross-linked with the DNA strands. In contrast, the pristine DNA and Hfq-CTR dispersions behave as purely viscous liquids. To broaden the scope of the MRS technique, we include theoretical predictions for the rotation of magnetic wires regarding the generic behaviors of basic rheological models from continuum mechanics, and we list the complex fluids studied by this technique over the past 10 years.
Mucus is a viscoelastic gel secreted by the pulmonary epithelium in the tracheobronchial region of the lungs. The coordinated beating of cilia moves mucus upwards towards pharynx, removing inhaled pathogens and particles from the airways. The efficac
A key objective in DNA-based material science is understanding and precisely controlling the mechanical properties of DNA hydrogels. We perform microrheology measurements using diffusing-wave spectroscopy (DWS) to investigate the viscoelastic behavio
In the technique of microrheology, macroscopic rheological parameters as well as information about local structure are deduced from the behavior of microscopic probe particles under thermal or active forcing. Microrheology requires knowledge of the r
Soft solids like colloidal glasses exhibit a yield stress, above which the system starts to flow. The microscopic analogon in microrheology is the delocalization of a tracer particle subject to an external force exceeding a threshold value, in a glas
We analyze the dynamics of a tracer particle embedded in a bath of hard spheres confined in a channel of varying section. By means of Brownian dynamics simulations we apply a constant force on the tracer particle and discuss the dependence of its mob