ﻻ يوجد ملخص باللغة العربية
We have simulated the motion of a bead subjected to a constant force while embedded in a network of semiflexible polymers which can represent actin filaments. We find that the bead displacement obeys the power law x ~ t^alfa. After the initial stage characterized by the exponent alfa=0.75 we find a new regime with alfa=0.5. The response in this regime is linear in force and scales with the polymer concentration as c^(-1.4). We find that the polymers pile up ahead of the moving bead, while behind it the polymer density is reduced. We show that the force resisting the bead motion is due to steric repulsion exerted by the polymers on the front hemisphere of the bead.
Using a recently developed bead-spring model for semiflexible polymers that takes into account their natural extensibility, we report an efficient algorithm to simulate the dynamics for polymers like double-stranded DNA (dsDNA) in the absence of hydr
Mucus is a viscoelastic gel secreted by the pulmonary epithelium in the tracheobronchial region of the lungs. The coordinated beating of cilia moves mucus upwards towards pharynx, removing inhaled pathogens and particles from the airways. The efficac
We present a theoretical framework for the linear and nonlinear visco-elastic properties of reversibly crosslinked networks of semiflexible polymers. In contrast to affine models where network strain couples to the polymer end-to-end distance, in our
Motivated by the structure of networks of cross-linked cytoskeletal biopolymers, we study the orientationally ordered phases in two-dimensional networks of randomly cross-linked semiflexible polymers. We consider permanent cross-links which prescribe
In this work we study the assisted translocation of a polymer across a membrane nanopore, inside which a molecular motor exerts a force fuelled by the hydrolysis of ATP molecules. In our model the motor switches to its active state for a fixed amount