ﻻ يوجد ملخص باللغة العربية
It is shown how a Doubly-Special Relativity model can emerge from a quantum cellular automaton description of the evolution of countably many interacting quantum systems. We consider a one-dimensional automaton that spawns the Dirac evolution in the relativistic limit of small wave-vectors and masses (in Planck units). The assumption of invariance of dispersion relations for boosted observers leads to a non-linear representation of the Lorentz group on the $(omega,k)$ space, with an additional invariant given by the wave-vector $k=pi /2$. The space-time reconstructed from the $(omega,k)$ space is intrinsically quantum, and exhibits the phenomenon of relative locality.
A generalized set of Clifford cellular automata, which includes all Clifford cellular automata, result from the quantization of a lattice system where on each site of the lattice one has a $2k$-dimensional torus phase space. The dynamics is a linear
We introduce a quantum cellular automaton that achieves approximate phase-covariant cloning of qubits. The automaton is optimized for 1-to-2N economical cloning. The use of the automaton for cloning allows us to exploit different foliations for improving the performance with given resources.
There exists an index theory to classify strictly local quantum cellular automata in one dimension. We consider two classification questions. First, we study to what extent this index theory can be applied in higher dimensions via dimensional reducti
One can think of some physical evolutions as being the emergent-effective result of a microscopic discrete model. Inspired by classical coarse-graining procedures, we provide a simple procedure to coarse-grain color-blind quantum cellular automata th
We show that depending on the direction of deformation of $kappa$-Poincare algebra (time-like, space-like, or light-like) the associated phase spaces of single particle in Doubly Special Relativity theories have the energy-momentum spaces of the form