ﻻ يوجد ملخص باللغة العربية
In the stochastic linear contextual bandit setting there exist several minimax procedures for exploration with policies that are reactive to the data being acquired. In practice, there can be a significant engineering overhead to deploy these algorithms, especially when the dataset is collected in a distributed fashion or when a human in the loop is needed to implement a different policy. Exploring with a single non-reactive policy is beneficial in such cases. Assuming some batch contexts are available, we design a single stochastic policy to collect a good dataset from which a near-optimal policy can be extracted. We present a theoretical analysis as well as numerical experiments on both synthetic and real-world datasets.
In this paper, we consider online learning in generalized linear contextual bandits where rewards are not immediately observed. Instead, rewards are available to the decision-maker only after some delay, which is unknown and stochastic. We study the
We study a constrained contextual linear bandit setting, where the goal of the agent is to produce a sequence of policies, whose expected cumulative reward over the course of $T$ rounds is maximum, and each has an expected cost below a certain thresh
In the contextual linear bandit setting, algorithms built on the optimism principle fail to exploit the structure of the problem and have been shown to be asymptotically suboptimal. In this paper, we follow recent approaches of deriving asymptoticall
Bandit algorithms have various application in safety-critical systems, where it is important to respect the system constraints that rely on the bandits unknown parameters at every round. In this paper, we formulate a linear stochastic multi-armed ban
Modifying the reward-biased maximum likelihood method originally proposed in the adaptive control literature, we propose novel learning algorithms to handle the explore-exploit trade-off in linear bandits problems as well as generalized linear bandit