ﻻ يوجد ملخص باللغة العربية
Modifying the reward-biased maximum likelihood method originally proposed in the adaptive control literature, we propose novel learning algorithms to handle the explore-exploit trade-off in linear bandits problems as well as generalized linear bandits problems. We develop novel index policies that we prove achieve order-optimality, and show that they achieve empirical performance competitive with the state-of-the-art benchmark methods in extensive experiments. The new policies achieve this with low computation time per pull for linear bandits, and thereby resulting in both favorable regret as well as computational efficiency.
Inspired by the Reward-Biased Maximum Likelihood Estimate method of adaptive control, we propose RBMLE -- a novel family of learning algorithms for stochastic multi-armed bandits (SMABs). For a broad range of SMABs including both the parametric Expon
The Reward-Biased Maximum Likelihood Estimate (RBMLE) for adaptive control of Markov chains was proposed to overcome the central obstacle of what is variously called the fundamental closed-identifiability problem of adaptive control, the dual control
We study a constrained contextual linear bandit setting, where the goal of the agent is to produce a sequence of policies, whose expected cumulative reward over the course of $T$ rounds is maximum, and each has an expected cost below a certain thresh
In the stochastic linear contextual bandit setting there exist several minimax procedures for exploration with policies that are reactive to the data being acquired. In practice, there can be a significant engineering overhead to deploy these algorit
Bandit algorithms have various application in safety-critical systems, where it is important to respect the system constraints that rely on the bandits unknown parameters at every round. In this paper, we formulate a linear stochastic multi-armed ban