ﻻ يوجد ملخص باللغة العربية
For a natural number $Ngeq 2$ and a real $alpha$ such that $0 < alpha leq sqrt{N}-1$, we define $I_alpha:=[alpha,alpha+1]$ and $I_alpha^-:=[alpha,alpha+1)$ and investigate the continued fraction map $T_alpha:I_alpha to I_alpha^-$, which is defined as $T_alpha(x):= N/x-d(x),$ where $d(x):=left lfloor N/x -alpharight rfloor$. For all natural $N geq 7$, for certain values of $alpha$, open intervals $(a,b) subset I_alpha$ exist such that for almost every $x in I_{alpha}$ there is an natural number $n_0$ for which $T_alpha^n(x) otin (a,b)$ for all $ngeq n_0$. These emph{gaps} $(a,b)$ are investigated in the square $Upsilon_alpha:=I_alpha times I_alpha^-$, where the emph{orbits} $T_alpha^k(x), k=0,1,2,ldots$ of numbers $x in I_alpha$ are represented as cobwebs. The squares $Upsilon_alpha$ are the union of emph{fundamental regions}, which are related to the cylinder sets of the map $T_alpha$, according to the finitely many values of $d$ in $T_alpha$. In this paper some clear conditions are found under which $I_alpha$ is gapless. When $I_alpha$ consists of at least five cylinder sets, it is always gapless. In the case of four cylinder sets there are usually no gaps, except for the rare cases that there is one, very wide gap. Gaplessness in the case of two or three cylinder sets depends on the position of the endpoints of $I_alpha$ with regard to the fixed points of $I_alpha$ under $T_alpha$.
A folklore conjecture in number theory states that the only integers whose expansions in base $3,4$ and $5$ contain solely binary digits are $0, 1$ and $82000$. In this paper, we present the first progress on this conjecture. Furthermore, we investig
For regular continued fraction, if a real number $x$ and its rational approximation $p/q$ satisfying $|x-p/q|<1/q^2$, then, after deleting the last integer of the partial quotients of $p/q$, the sequence of the remaining partial quotients is a prefix
We study the dynamics of the map endomorphism of N-dimensional projective space defined by f(X)=AX^d, where A is a matrix and d is at least 2. When d>N^2+N+1, we show that the critical height of such a morphism is comparable to its height in moduli s
If $mathfrak{p} subseteq mathbb{Z}[zeta]$ is a prime ideal over $p$ in the $(p^d - 1)$th cyclotomic extension of $mathbb{Z}$, then every element $alpha$ of the completion $mathbb{Z}[zeta]_mathfrak{p}$ has a unique expansion as a power series in $p$ w
It was discovered some years ago that there exist non-integer real numbers $q>1$ for which only one sequence $(c_i)$ of integers $c_i in [0,q)$ satisfies the equality $sum_{i=1}^infty c_iq^{-i}=1$. The set of such univoque numbers has a rich topologi