ترغب بنشر مسار تعليمي؟ اضغط هنا

Digit expansions of numbers in different bases

101   0   0.0 ( 0 )
 نشر من قبل Stuart A. Burrell Mr
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A folklore conjecture in number theory states that the only integers whose expansions in base $3,4$ and $5$ contain solely binary digits are $0, 1$ and $82000$. In this paper, we present the first progress on this conjecture. Furthermore, we investigate the density of the integers containing only binary digits in their base $3$ or $4$ expansion, whereon an exciting transition in behaviour is observed. Our methods shed light on the reasons for this, and relate to several well-known questions, such as Grahams problem and a related conjecture of Pomerance. Finally, we generalise this setting and prove that the set of numbers in $[0, 1]$ who do not contain some digit in their $b$-expansion for all $b geq 3$ has zero Hausdorff dimension.



قيم البحث

اقرأ أيضاً

Let s be an integer greater than or equal to 2. A real number is simply normal to base s if in its base-s expansion every digit 0, 1, ..., s-1 occurs with the same frequency 1/s. Let X be the set of positive integers that are not perfect powers, henc e X is the set {2,3, 5,6,7,10,11,...} . Let M be a function from X to sets of positive integers such that, for each s in X, if m is in M(s) then each divisor of m is in M(s) and if M(s) is infinite then it is equal to the set of all positive integers. These conditions on M are necessary for there to be a real number which is simply normal to exactly the bases s^m such that s is in X and m is in M(s). We show these conditions are also sufficient and further establish that the set of real numbers that satisfy them has full Hausdorff dimension. This extends a result of W. M. Schmidt (1961/1962) on normal numbers to different bases.
We prove independence of normality to different bases We show that the set of real numbers that are normal to some base is Sigma^0_4 complete in the Borel hierarchy of subsets of real numbers. This was an open problem, initiated by Alexander Kechris, and conjectured by Ditzen 20 years ago.
104 - Martijn de Vries 2006
It was discovered some years ago that there exist non-integer real numbers $q>1$ for which only one sequence $(c_i)$ of integers $c_i in [0,q)$ satisfies the equality $sum_{i=1}^infty c_iq^{-i}=1$. The set of such univoque numbers has a rich topologi cal structure, and its study revealed a number of unexpected connections with measure theory, fractals, ergodic theory and Diophantine approximation. In this paper we consider for each fixed $q>1$ the set $mathcal{U}_q$ of real numbers $x$ having a unique representation of the form $sum_{i=1}^infty c_iq^{-i}=x$ with integers $c_i$ belonging to $[0,q)$. We carry out a detailed topological study of these sets. For instance, we characterize their closures, and we determine those bases $q$ for which $mathcal{U}_q$ is closed or even a Cantor set. We also study the set $mathcal{U}_q$ consisting of all sequences $(c_i)$ of integers $c_i in [0,q)$ such that $sum_{i=1}^{infty} c_i q^{-i} in mathcal{U}_q$. We determine the numbers $r >1$ for which the map $q mapsto mathcal{U}_q$ (defined on $(1, infty)$) is constant in a neighborhood of $r$ and the numbers $q >1$ for which $mathcal{U}_q$ is a subshift or a subshift of finite type.
For a natural number $Ngeq 2$ and a real $alpha$ such that $0 < alpha leq sqrt{N}-1$, we define $I_alpha:=[alpha,alpha+1]$ and $I_alpha^-:=[alpha,alpha+1)$ and investigate the continued fraction map $T_alpha:I_alpha to I_alpha^-$, which is defined as $T_alpha(x):= N/x-d(x),$ where $d(x):=left lfloor N/x -alpharight rfloor$. For all natural $N geq 7$, for certain values of $alpha$, open intervals $(a,b) subset I_alpha$ exist such that for almost every $x in I_{alpha}$ there is an natural number $n_0$ for which $T_alpha^n(x) otin (a,b)$ for all $ngeq n_0$. These emph{gaps} $(a,b)$ are investigated in the square $Upsilon_alpha:=I_alpha times I_alpha^-$, where the emph{orbits} $T_alpha^k(x), k=0,1,2,ldots$ of numbers $x in I_alpha$ are represented as cobwebs. The squares $Upsilon_alpha$ are the union of emph{fundamental regions}, which are related to the cylinder sets of the map $T_alpha$, according to the finitely many values of $d$ in $T_alpha$. In this paper some clear conditions are found under which $I_alpha$ is gapless. When $I_alpha$ consists of at least five cylinder sets, it is always gapless. In the case of four cylinder sets there are usually no gaps, except for the rare cases that there is one, very wide gap. Gaplessness in the case of two or three cylinder sets depends on the position of the endpoints of $I_alpha$ with regard to the fixed points of $I_alpha$ under $T_alpha$.
253 - Maysum Panju 2011
A beta expansion is the analogue of the base 10 representation of a real number, where the base may be a non-integer. Although the greedy beta expansion of 1 using a non-integer base is in general infinitely long and non-repeating, it is known that i f the base is a Pisot number, then this expansion will always be finite or periodic. Some work has been done to learn more about these expansions, but in general these expansions were not explicitly known. In this paper, we present a complete list of the greedy beta expansions of 1 where the base is any regular Pisot number less than 2, revealing a variety of remarkable patterns. We also answer a conjecture of Boyds regarding cyclotomic co-factors for greedy expansions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا