ﻻ يوجد ملخص باللغة العربية
For regular continued fraction, if a real number $x$ and its rational approximation $p/q$ satisfying $|x-p/q|<1/q^2$, then, after deleting the last integer of the partial quotients of $p/q$, the sequence of the remaining partial quotients is a prefix of that of $x$. In this paper, we show that the situation is completely different if we consider the Hurwitz continued fraction expansions of a complex number and its rational approximations. More specifically, we consider the set $E(psi)$ of complex numbers which are well approximated with the given bound $psi$ and have quite different Hurwitz continued fraction expansions from that of their rational approximations. The Hausdorff and packing dimensions of such set are determined. It turns out that its packing dimension is always full for any given approximation bound $psi$ and its Hausdorff dimension is equal to that of the $psi$-approximable set $W(psi)$ of complex numbers. As a consequence, we also obtain an analogue of the classical Jarnik Theorem in real case.
Let $q>2$ be an odd integer. For each integer $x$ with $0<x<q$ and $(q,x)= 1$, we know that there exists one and only one $bar{x}$ with $0<bar{x}<q$ such that $xbar{x}equiv1(bmod q)$. A Lehmer number is defined to be any integer $a$ with $2dagger(a+b
For a quadratic endomorphism of the affine line defined over the rationals, we consider the problem of bounding the number of rational points that eventually land at the origin after iteration. In the article ``Uniform Bounds on Pre-Images Under Quad
The goal of this paper is to formulate a systematical method for constructing the fastest possible continued fraction approximations of a class of functions. The main tools are the multiple-correction method, the generalized Morticis lemma and the Mo
We exhibit a method to use continued fractions in function fields to find new families of hyperelliptic curves over the rationals with given torsion order in their Jacobians. To show the utility of the method, we exhibit a new infinite family of curv
In this short note we prove two elegant generalized continued fraction formulae $$e= 2+cfrac{1}{1+cfrac{1}{2+cfrac{2}{3+cfrac{3}{4+ddots}}}}$$ and $$e= 3+cfrac{-1}{4+cfrac{-2}{5+cfrac{-3}{6+cfrac{-4}{7+ddots}}}}$$ using elementary methods. The first