ﻻ يوجد ملخص باللغة العربية
Rotation periods of 53 small (diameters $2 < D < 40$ km) Jupiter Trojans (JTs) were derived using the high-cadence light curves obtained by the FOSSIL phase I survey, a Subaru/Hyper Suprime-Cam intensive program. These are the first reported periods measured for JTs with $D < 10$ km. We found a lower limit of the rotation period near 4 hr, instead of the previously published result of 5 hr (Ryan et al. 2017; Szabo et al. 2017, 2020) found for larger JTs. Assuming a rubble-pile structure for JTs, a bulk density of 0.9 gcm$^{-3}$ is required to withstand this spin rate limit, consistent with the value $0.8-1.0$ gcm$^{-3}$ (Marchis et al. 2006; Mueller et al. 2010; Buie et al. 2015; Berthier et al. 2020) derived from the binary JT system, (617) Patroclus-Menoetius system.
With the growing numbers of asteroids being discovered, identifying an observationally complete sample is essential for statistical analyses and for informing theoretical models of the dynamical evolution of the solar system. We present an easily imp
The most distant Kuiper belt objects exhibit the clustering in their orbits, and this anomalous architecture could be caused by Planet 9 with large eccentricity and high inclination. We then suppose that the orbital clustering of minor planets may be
The Eurybates family is a compact core inside the Menelaus clan, located in the L4 swarm of Jupiter Trojans. Fornasier et al. (2007) found that this family exhibits a peculiar abundance of spectrally flat objects, similar to Chiron-like Centaurs and
We present a series of numerical integrations of observed and fictitious Jupiter Trojan asteroids, under the gravitational effects of the four outer planets, for time-spans comparable with the age of the Solar System. From these results we calculate
We present the first-ever rotationally resolved spectroscopic investigation of (624) Hektor and (911) Agamemnon, the two largest Jupiter Trojans. The visible and near-infrared spectra that we have obtained at the TNG telescope (La Palma, Spain) do no