ﻻ يوجد ملخص باللغة العربية
With the growing numbers of asteroids being discovered, identifying an observationally complete sample is essential for statistical analyses and for informing theoretical models of the dynamical evolution of the solar system. We present an easily implemented method of estimating the empirical observational completeness in absolute magnitude, H_lim, as a function of semi-major axis. Our method requires fewer assumptions and decisions to be made in its application, making results more transportable and reproducible amongst studies that implement it, as well as scalable to much larger datasets of asteroids expected in the next decade with the Vera C.~Rubin Observatorys Legacy Survey of Space and Time (LSST). Using the values of H_lim(a) determined at high resolution in semimajor axis, a, we demonstrate that the observationally complete sample size of the main belt asteroids is larger by more than a factor of 2 compared to using a conservative single value of H_lim, an approach often adopted in previous studies. Additionally, by fitting a simple, physically motivated model of H_lim(a) to 7e5 objects in the Minor Planet Database, our model reveals statistically significant deviations between the main belt and the asteroid populations beyond the main belt (Hungarias, Hildas and Trojans), suggesting potential demographic differences, such as in their size, eccentricity or inclination distributions.
Rotation periods of 53 small (diameters $2 < D < 40$ km) Jupiter Trojans (JTs) were derived using the high-cadence light curves obtained by the FOSSIL phase I survey, a Subaru/Hyper Suprime-Cam intensive program. These are the first reported periods
We present the results of snapshot numerical integrations of test particles representing comet-like and asteroid-like objects in the inner solar system aimed at investigating the short-term dynamical evolution of objects close to the dynamical bounda
The most distant Kuiper belt objects exhibit the clustering in their orbits, and this anomalous architecture could be caused by Planet 9 with large eccentricity and high inclination. We then suppose that the orbital clustering of minor planets may be
The Eurybates family is a compact core inside the Menelaus clan, located in the L4 swarm of Jupiter Trojans. Fornasier et al. (2007) found that this family exhibits a peculiar abundance of spectrally flat objects, similar to Chiron-like Centaurs and
In the core-accretion model the nominal runaway gas-accretion phase brings most planets to multiple Jupiter masses. However, known giant planets are predominantly Jupiter-mass bodies. Obtaining longer timescales for gas accretion may require using re