ﻻ يوجد ملخص باللغة العربية
We present the first-ever rotationally resolved spectroscopic investigation of (624) Hektor and (911) Agamemnon, the two largest Jupiter Trojans. The visible and near-infrared spectra that we have obtained at the TNG telescope (La Palma, Spain) do not show any feature or hints of heterogeneity. In particular we found no hints of water-related absorptions. No cometary activity was detected down to ~23.5 R-mag/arcsec2 based on the complementary photometric data. We estimated upper limits on the dust production rates of Hektor and Agamemnon to be ~30 kg/s and ~24 kg/s, respectively. We modelled complete visible and near-infrared spectra of our targets using the Shkuratov formalism, to define the upper limit to the presence of water ice and more in general to constrain their surface composition. For both objects, successful models include amorphous carbon, magnesium-rich pyroxene and kerogen, with an upper limit to the amount of water ice of a few percent.
Asteroids with satellites are natural laboratories to constrain the formation and evolution of our solar system. The binary Trojan asteroid (624) Hektor is the only known Trojan asteroid to possess a small satellite. Based on W.M. Keck adaptive optic
Apollo-type NEA (3200) Phaethon, classified at the B/F-type taxonomy, probably the main mass of the Phaethon-Geminid stream complex (PGC), can be the most metamorphic C-complex asteroid in our solar system, since it is heated up to ~1000 K by the sol
The most distant Kuiper belt objects exhibit the clustering in their orbits, and this anomalous architecture could be caused by Planet 9 with large eccentricity and high inclination. We then suppose that the orbital clustering of minor planets may be
Models of the escape and retention of volatiles by minor icy objects exclude any presence of volatile ices on the surface of TNOs smaller than ~1000km in diameter at the typical temperature in this region of the solar system, whereas the same models
The Eurybates family is a compact core inside the Menelaus clan, located in the L4 swarm of Jupiter Trojans. Fornasier et al. (2007) found that this family exhibits a peculiar abundance of spectrally flat objects, similar to Chiron-like Centaurs and