ﻻ يوجد ملخص باللغة العربية
A main disadvantage of many high-order methods for hyperbolic conservation laws lies in the famous Gibbs-Wilbraham phenomenon, once discontinuities appear in the solution. Due to the Gibbs-Wilbraham phenomenon, the numerical approximation will be polluted by spurious oscillations, which produce unphysical numerical solutions and might finally blow up the computation. In this work, we propose a new shock capturing procedure to stabilise high-order spectral element approximations. The procedure consists of going over from the original (polluted) approximation to a convex combination of the original approximation and its Bernstein reconstruction, yielding a stabilised approximation. The coefficient in the convex combination, and therefore the procedure, is steered by a discontinuity sensor and is only activated in troubled elements. Building up on classical Bernstein operators, we are thus able to prove that the resulting Bernstein procedure is total variation diminishing and preserves monotone (shock) profiles. Further, the procedure can be modified to not just preserve but also to enforce certain bounds for the solution, such as positivity. In contrast to other shock capturing methods, e.g. artificial viscosity methods, the new procedure does not reduce the time step or CFL condition and can be easily and efficiently implemented into any existing code. Numerical tests demonstrate that the proposed shock-capturing procedure is able to stabilise and enhance spectral element approximations in the presence of shocks.
A series of shock capturing schemes based on nonuniform nonlinear weighted interpolation on nonuniform points are developed for conservation laws. Smoothness indicator and discrete conservation laws are discussed. To make fair comparisons between dif
In this paper, we propose a hybrid finite volume Hermite weighted essentially non-oscillatory (HWENO) scheme for solving one and two dimensional hyperbolic conservation laws. The zeroth-order and the first-order moments are used in the spatial recons
We formulate an oversampled radial basis function generated finite difference (RBF-FD) method to solve time-dependent nonlinear conservation laws. The analytic solutions of these problems are known to be discontinuous, which leads to occurrence of no
In this paper, a fifth-order Hermite weighted essentially non-oscillatory (HWENO) scheme with artificial linear weights is proposed for one and two dimensional hyperbolic conservation laws, where the zeroth-order and the first-order moments are used
We propose a nonlinear registration-based model reduction procedure for rapid and reliable solution of parameterized two-dimensional steady conservation laws. This class of problems is challenging for model reduction techniques due to the presence of