ﻻ يوجد ملخص باللغة العربية
Good approximate eigenstates of a Hamiltionian operator which poesses a point as well as a continuous spectrum have beeen obtained using the Lanczos algorithm. Iterating with the bare Hamiltonian operator yields spurious solutions which can easily be identified. The rms radius of the ground state eigenvector, for example, is calculated using the bare operator.
A review is presented of the development and current status of nuclear shell-model calculations in which the two-body effective interaction is derived from the free nucleon-nucleon potential. The significant progress made in this field within the las
A finite rank separable approximation for the quasiparticle RPA calculations with Skyrme interactions that was proposed in our previous work is extended to take into account the coupling between one- and two-phonon terms in the wave functions of exci
In this review we present the recent advances for calculations of the reactions $NNto NNpi$ using chiral effective field theory. Discussed are the next-to-next-to leading order loop contributions with nucleon and Delta-isobar for near threshold s-wav
We perform state-of-the-art large-scale shell-model calculations of the structure factors for elastic spin-dependent WIMP scattering off 129,131Xe, 127I, 73Ge, 19F, 23Na, 27Al, and 29Si. This comprehensive survey covers the non-zero-spin nuclei relev
The Faddeev equations for the three body bound state are solved directly as three dimensional integral equation without employing partial wave decomposition. The numerical stability of the algorithm is demonstrated. The three body binding energy is c