ترغب بنشر مسار تعليمي؟ اضغط هنا

Effective Field Theory calculations of $NNto NNpi$

137   0   0.0 ( 0 )
 نشر من قبل Vadim Baru
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this review we present the recent advances for calculations of the reactions $NNto NNpi$ using chiral effective field theory. Discussed are the next-to-next-to leading order loop contributions with nucleon and Delta-isobar for near threshold s-wave pion production. Results of recent experimental pion-production data for energies close to the threshold are analyzed. Several particular applications are discussed: (i) it is shown how the measured charge symmetry violating pion-production reaction can be used to extract the strong-interaction contribution to the proton-neutron mass difference; (ii) the role of $NNto NNpi$ for the extraction of the pion-nucleon scattering lengths from pionic atoms data is illuminated.



قيم البحث

اقرأ أيضاً

We discuss the current status of chiral effective field theory in the three-nucleon sector and present selected results for nucleon-deuteron scattering observables based on semilocal momentum-space-regularized chiral two-nucleon potentials together w ith consistently regularized three-nucleon forces up to third chiral order. Using a Bayesian model for estimating truncation errors, the obtained results are found to provide a good description of the experimental data. We confirm our earlier findings that a high-precision description of nucleon-deuteron scattering data below pion production threshold will require the theory to be pushed to fifth chiral order. This conclusion is substantiated by an exploratory study of selected short-range contributions to the three-nucleon force at that order, which, as expected, are found to have significant effects on polarization observables at intermediate and high energies. We also outline the challenges that will need to be addressed in order to push the chiral expansion of three-nucleon scattering observables to higher orders.
We explore the effects on nuclear bulk properties of using regularization cutoffs larger than the nucleon mass within the chiral effective field theory using a power counting that ensures order-by-order renormalization in the two-nucleon system. To d o so we calculate ground-state properties of the $^{16}$O nucleus in the Hartree--Fock approach in a basis made up of plane waves confined in a cube. We find a strong sensitivity to the regularization cutoff through the counter-terms in attractive singular partial waves and to the correction for spurious deeply bound states. This questions the possibility of testing in nuclei the renormalization-group invariance of renormalizable potentials from chiral effective field theory at leading order. A possible way out of this problem is proposed.
122 - H.-W. Hammer , C. Ji , 2017
Nuclear halos emerge as new degrees of freedom near the neutron and proton driplines. They consist of a core and one or a few nucleons which spend most of their time in the classically-forbidden region outside the range of the interaction. Individual nucleons inside the core are thus unresolved in the halo configuration, and the low-energy effective interactions are short-range forces between the core and the valence nucleons. Similar phenomena occur in clusters of $^4$He atoms, cold atomic gases near a Feshbach resonance, and some exotic hadrons. In these weakly-bound quantum systems universal scaling laws for s-wave binding emerge that are independent of the details of the interaction. Effective field theory (EFT) exposes these correlations and permits the calculation of non-universal corrections to them due to short-distance effects, as well as the extension of these ideas to systems involving the Coulomb interaction and/or binding in higher angular-momentum channels. Halo nuclei exhibit all these features. Halo EFT, the EFT for halo nuclei, has been used to compute the properties of single-neutron, two-neutron, and single-proton halos of s-wave and p-wave type. This review summarizes these results for halo binding energies, radii, Coulomb dissociation, and radiative capture, as well as the connection of these properties to scattering parameters, thereby elucidating the universal correlations between all these observables. We also discuss how Halo EFTs encoding of the long-distance physics of halo nuclei can be used to check and extend ab initio calculations that include detailed modeling of their short-distance dynamics.
467 - P. Klos , J. Menendez , D. Gazit 2013
We perform state-of-the-art large-scale shell-model calculations of the structure factors for elastic spin-dependent WIMP scattering off 129,131Xe, 127I, 73Ge, 19F, 23Na, 27Al, and 29Si. This comprehensive survey covers the non-zero-spin nuclei relev ant to direct dark matter detection. We include a pedagogical presentation of the formalism necessary to describe elastic and inelastic WIMP-nucleus scattering. The valence spaces and nuclear interactions employed have been previously used in nuclear structure calculations for these mass regions and yield a good spectroscopic description of these isotopes. We use spin-dependent WIMP-nucleus currents based on chiral effective field theory (EFT) at the one-body level and including the leading long-range two-body currents due to pion exchange, which are predicted in chiral EFT. Results for all structure factors are provided with theoretical error bands due to the nuclear uncertainties of WIMP currents in nuclei.
308 - N.Barnea , L.Contessi , D. Gazit 2013
We show how nuclear effective field theory (EFT) and ab initio nuclear-structure methods can turn input from lattice quantum chromodynamics (LQCD) into predictions for the properties of nuclei. We argue that pionless EFT is the appropriate theory to describe the light nuclei obtained in recent LQCD simulations carried out at pion masses much heavier than the physical pion mass. We solve the EFT using the effective-interaction hyperspherical harmonics and auxiliary-field diffusion Monte Carlo methods. Fitting the three leading-order EFT parameters to the deuteron, dineutron and triton LQCD energies at $m_{pi}approx 800$ MeV, we reproduce the corresponding alpha-particle binding and predict the binding energies of mass-5 and 6 ground states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا