ترغب بنشر مسار تعليمي؟ اضغط هنا

Large-scale nuclear structure calculations for spin-dependent WIMP scattering with chiral effective field theory currents

484   0   0.0 ( 0 )
 نشر من قبل Javier Menendez
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform state-of-the-art large-scale shell-model calculations of the structure factors for elastic spin-dependent WIMP scattering off 129,131Xe, 127I, 73Ge, 19F, 23Na, 27Al, and 29Si. This comprehensive survey covers the non-zero-spin nuclei relevant to direct dark matter detection. We include a pedagogical presentation of the formalism necessary to describe elastic and inelastic WIMP-nucleus scattering. The valence spaces and nuclear interactions employed have been previously used in nuclear structure calculations for these mass regions and yield a good spectroscopic description of these isotopes. We use spin-dependent WIMP-nucleus currents based on chiral effective field theory (EFT) at the one-body level and including the leading long-range two-body currents due to pion exchange, which are predicted in chiral EFT. Results for all structure factors are provided with theoretical error bands due to the nuclear uncertainties of WIMP currents in nuclei.



قيم البحث

اقرأ أيضاً

147 - L. Vietze , P. Klos , J. Menendez 2014
We study the structure factors for spin-independent WIMP scattering off xenon based on state-of-the-art large-scale shell-model calculations, which are shown to yield a good spectroscopic description of all experimentally relevant isotopes. Our resul ts are based on the leading scalar one-body currents only. At this level and for the momentum transfers relevant to direct dark matter detection, the structure factors are in very good agreement with the phenomenological Helm form factors used to give experimental limits for WIMP-nucleon cross sections. In contrast to spin-dependent WIMP scattering, the spin-independent channel, at the one-body level, is less sensitive to nuclear structure details. In addition, we explicitly show that the structure factors for inelastic scattering are suppressed by ~ 10^{-4} compared to the coherent elastic scattering response. This implies that the detection of inelastic scattering will be able to discriminate clearly between spin-independent and spin-dependent scattering. Finally, we provide fits for all calculated structure factors.
Two-nucleon axial charge and current operators are derived in chiral effective field theory up to one loop. The derivation is based on time-ordered perturbation theory, and accounts for cancellations between the contributions of irreducible diagrams and the contributions due to non-static corrections from energy denominators of reducible diagrams. Ultraviolet divergencies associated with the loop corrections are isolated in dimensional regularization. The resulting axial current is finite and conserved in the chiral limit, while the axial charge requires renormalization. A complete set of contact terms for the axial charge up to the relevant order in the power counting is constructed.
Recently, we have shown that the continuity equation for the nuclear vector and axial current operators acquires additional terms if the latter depend on the energy transfer. We analyze in detail the electromagnetic single-nucleon four-current operat ors and verify the validity of the modified continuity equation for all one- and two-nucleon contributions up to fourth order in the chiral expansion. We also derive, for the first time, the leading contribution to the three-nucleon charge operator which appears at this order. Our study completes the derivation of the electroweak nuclear currents to fourth order in the chiral expansion.
Since the pioneering work of Weinberg, Chiral Effective Field Theory ($chi$EFT) has been widely and successfully utilized in nuclear physics to study many-nucleon interactions and associated electroweak currents. Nuclear $chi$EFT has now developed in to an intense field of research and is applied to study light to medium mass nuclei. In this contribution, we focus on the development of electroweak currents from $chi$EFT and present applications to selected nuclear electroweak observables.
We discuss the current status of chiral effective field theory in the three-nucleon sector and present selected results for nucleon-deuteron scattering observables based on semilocal momentum-space-regularized chiral two-nucleon potentials together w ith consistently regularized three-nucleon forces up to third chiral order. Using a Bayesian model for estimating truncation errors, the obtained results are found to provide a good description of the experimental data. We confirm our earlier findings that a high-precision description of nucleon-deuteron scattering data below pion production threshold will require the theory to be pushed to fifth chiral order. This conclusion is substantiated by an exploratory study of selected short-range contributions to the three-nucleon force at that order, which, as expected, are found to have significant effects on polarization observables at intermediate and high energies. We also outline the challenges that will need to be addressed in order to push the chiral expansion of three-nucleon scattering observables to higher orders.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا