ﻻ يوجد ملخص باللغة العربية
We propose a new method of instance-level microtubule (MT) tracking in time-lapse image series using recurrent attention. Our novel deep learning algorithm segments individual MTs at each frame. Segmentation results from successive frames are used to assign correspondences among MTs. This ultimately generates a distinct path trajectory for each MT through the frames. Based on these trajectories, we estimate MT velocities. To validate our proposed technique, we conduct experiments using real and simulated data. We use statistics derived from real time-lapse series of MT gliding assays to simulate realistic MT time-lapse image series in our simulated data. This dataset is employed as pre-training and hyperparameter optimization for our network before training on the real data. Our experimental results show that the proposed supervised learning algorithm improves the precision for MT instance velocity estimation drastically to 71.3% from the baseline result (29.3%). We also demonstrate how the inclusion of temporal information into our deep network can reduce the false negative rates from 67.8% (baseline) down to 28.7% (proposed). Our findings in this work are expected to help biologists characterize the spatial arrangement of MTs, specifically the effects of MT-MT interactions.
Tracking the 6D pose of objects in video sequences is important for robot manipulation. Most prior efforts, however, often assume that the target objects CAD model, at least at a category-level, is available for offline training or during online temp
Multiple Instance Learning (MIL) recently provides an appealing way to alleviate the drifting problem in visual tracking. Following the tracking-by-detection framework, an online MILBoost approach is developed that sequentially chooses weak classifie
Current state-of-the-art trackers often fail due to distractorsand large object appearance changes. In this work, we explore the use ofdense optical flow to improve tracking robustness. Our main insight is that, because flow estimation can also have
In this work, we propose a novel Reversible Recursive Instance-level Object Segmentation (R2-IOS) framework to address the challenging instance-level object segmentation task. R2-IOS consists of a reversible proposal refinement sub-network that predi
Unpaired Image-to-image Translation is a new rising and challenging vision problem that aims to learn a mapping between unaligned image pairs in diverse domains. Recent advances in this field like MUNIT and DRIT mainly focus on disentangling content