ترغب بنشر مسار تعليمي؟ اضغط هنا

Maximal pronilfactors and a topological Wiener-Wintner theorem

67   0   0.0 ( 0 )
 نشر من قبل Zhengxing Lian
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For strictly ergodic systems, we introduce the class of CF-Nil($k$) systems: systems for which the maximal measurable and maximal topological $k$-step pronilfactors coincide as measure-preserving systems. Weiss theorem implies that such systems are abundant in a precise sense. We show that the CF-Nil($k$) systems are precisely the class of minimal systems for which the $k$-step nilsequence version of the Wiener-Wintner average converges everywhere. As part of the proof we establish that pronilsystems are $coalescent$. In addition, we characterize a CF-Nil($k$) system in terms of its $(k+1)$-$th dynamical cubespace$. In particular, for $k=1$, this provides for strictly ergodic systems a new condition equivalent to the property that every measurable eigenfunction has a continuous version.



قيم البحث

اقرأ أيضاً

We prove that every $mathbb{Z}^{k}$-action $(X,mathbb{Z}^{k},T)$ of mean dimension less than $D/2$ admitting a factor $(Y,mathbb{Z}^{k},S)$ of Rokhlin dimension not greater than $L$ embeds in $(([0,1]^{(L+1)D})^{mathbb{Z}^{k}}times Y,sigmatimes S)$, where $Dinmathbb{N}$, $Linmathbb{N}cup{0}$ and $sigma$ is the shift on the Hilbert cube $([0,1]^{(L+1)D})^{mathbb{Z}^{k}}$; in particular, when $(Y,mathbb{Z}^{k},S)$ is an irrational $mathbb{Z}^{k}$-rotation on the $k$-torus, $(X,mathbb{Z}^{k},T)$ embeds in $(([0,1]^{2^kD+1})^{mathbb{Z}^k},sigma)$, which is compared to a previous result by the first named author, Lindenstrauss and Tsukamoto. Moreover, we give a complete and detailed proof of Takens embedding theorem with a continuous observable for $mathbb{Z}$-actions and deduce the analogous result for $mathbb{Z}^{k}$-actions. Lastly, we show that the Lindenstrauss--Tsukamoto conjecture for $mathbb{Z}$-actions holds generically, discuss an analogous conjecture for $mathbb{Z}^{k}$-actions appearing in a forthcoming paper by the first two authors and Tsukamoto and verify it for $mathbb{Z}^{k}$-actions on finite dimensional spaces.
Given a compact topological dynamical system (X, f) with positive entropy and upper semi-continuous entropy map, and any closed invariant subset $Y subset X$ with positive entropy, we show that there exists a continuous roof function such that the se t of measures of maximal entropy for the suspension semi-flow over (X,f) consists precisely of the lifts of measures which maximize entropy on Y. This result has a number of implications for the possible size of the set of measures of maximal entropy for topological suspension flows. In particular, for a suspension flow on the full shift on a finite alphabet, the set of ergodic measures of maximal entropy may be countable, uncountable, or have any finite cardinality.
We study a mechanical system that was considered by Boltzmann in 1868 in the context of the derivation of the canonical and microcanonical ensembles. This system was introduced as an example of ergodic dynamics, which was central to Boltzmanns deriva tion. It consists of a single particle in two dimensions, which is subjected to a gravitational attraction to a fixed center. In addition, an infinite plane is fixed at some finite distance from the center, which acts as a hard wall on which the particle collides elastically. Finally, an extra centrifugal force is added. We will show that, in the absence of this extra centrifugal force, there are two independent integrals of motion. Therefore the extra centrifugal force is necessary for Boltzmanns claim of ergodicity to hold.
We prove unique continuation principles for solutions of evolution Schrodinger equations with time dependent potentials. These correspond to uncertainly principles of Paley-Wiener type for the Fourier transform. Our results extends to a large class of semi-linear Schrodinger equation.
The classical Wiener-Khinchin theorem (WKT), which can extract spectral information by classical interferometers through Fourier transform, is a fundamental theorem used in many disciplines. However, there is still need for a quantum version of WKT, which could connect correlated biphoton spectral information by quantum interferometers. Here, we extend the classical WKT to its quantum counterpart, i.e., extended WKT (e-WKT), which is based on two-photon quantum interferometry. According to the e-WKT, the difference-frequency distribution of the biphoton wavefunctions can be extracted by applying a Fourier transform on the time-domain Hong-Ou-Mandel interference (HOMI) patterns, while the sum-frequency distribution can be extracted by applying a Fourier transform on the time-domain NOON state interference (NOONI) patterns. We also experimentally verified the WKT and e-WKT in a Mach-Zehnder interference (MZI), a HOMI and a NOONI. This theorem can be directly applied to quantum spectroscopy, where the spectral correlation information of biphotons can be obtained from time-domain quantum interferences by Fourier transform. This may open a new pathway for the study of light-matter interaction at the single photon level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا