ﻻ يوجد ملخص باللغة العربية
The classical Wiener-Khinchin theorem (WKT), which can extract spectral information by classical interferometers through Fourier transform, is a fundamental theorem used in many disciplines. However, there is still need for a quantum version of WKT, which could connect correlated biphoton spectral information by quantum interferometers. Here, we extend the classical WKT to its quantum counterpart, i.e., extended WKT (e-WKT), which is based on two-photon quantum interferometry. According to the e-WKT, the difference-frequency distribution of the biphoton wavefunctions can be extracted by applying a Fourier transform on the time-domain Hong-Ou-Mandel interference (HOMI) patterns, while the sum-frequency distribution can be extracted by applying a Fourier transform on the time-domain NOON state interference (NOONI) patterns. We also experimentally verified the WKT and e-WKT in a Mach-Zehnder interference (MZI), a HOMI and a NOONI. This theorem can be directly applied to quantum spectroscopy, where the spectral correlation information of biphotons can be obtained from time-domain quantum interferences by Fourier transform. This may open a new pathway for the study of light-matter interaction at the single photon level.
The Wiener-Khinchin theorem for the Fourier-Laplace transformation (WKT-FLT) provides a robust method to calculate numerically single-side Fourier transforms of arbitrary autocorrelation functions from molecular simulations. However, the existing WKT
A recent paper [M. H. Lee, Phys. Rev. Lett. 98, 190601 (2007)] has called attention to the fact that irreversibility is a broader concept than ergodicity, and that therefore the Khinchin theorem [A. I. Khinchin, Mathematical Foundations of Statistica
The resolution of a conventional imaging system based on first-order field correlation can be directly obtained from the optical transfer function. However, it is challenging to determine the resolution of an imaging system through random media, incl
We explore the extended Koopmans theorem (EKT) within the phaseless auxiliary-field quantum Monte Carlo (AFQMC) method. The EKT allows for the direct calculation of electron addition and removal spectral functions using reduced density matrices of th
We prove unique continuation principles for solutions of evolution Schrodinger equations with time dependent potentials. These correspond to uncertainly principles of Paley-Wiener type for the Fourier transform. Our results extends to a large class of semi-linear Schrodinger equation.