ترغب بنشر مسار تعليمي؟ اضغط هنا

A Theorem of Paley-Wiener Type for Schrodinger Evolutions

227   0   0.0 ( 0 )
 نشر من قبل Gustavo Ponce
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove unique continuation principles for solutions of evolution Schrodinger equations with time dependent potentials. These correspond to uncertainly principles of Paley-Wiener type for the Fourier transform. Our results extends to a large class of semi-linear Schrodinger equation.



قيم البحث

اقرأ أيضاً

We establish a necessary and sufficient condition for a boundary point to be regular for the Dirichlet problem related to a class of Kolmogorov-type equations. Our criterion is inspired by two classical criteria for the heat equation: the Evans-Garie pys Wiener test, and a criterion by Landis expressed in terms of a series of caloric potentials.
We prove unique continuation properties for solutions of the evolution Schrodinger equation with time dependent potentials. As an application of our method we also obtain results concerning the possible concentration profiles of blow up solutions and the possible profiles of the traveling waves solutions of semi-linear Schrodinger equations.
We develop real Paley-Wiener theorems for classes ${mathcal S}_omega$ of ultradifferentiable functions and related $L^{p}$-spaces in the spirit of Bang and Andersen for the Schwartz class. We introduce results of this type for the so-called Gabor tra nsform and give a full characterization in terms of Fourier and Wigner transforms for several variables of a Paley-Wiener theorem in this general setting, which is new in the literature. We also analyze this type of results when the support of the function is not compact using polynomials. Some examples are given.
83 - Siran Li 2019
We give a soft proof of Albertis Luzin-type theorem in [1] (G. Alberti, A Lusintype theorem for gradients, J. Funct. Anal. 100 (1991)), using elementary geometric measure theory and topology. Applications to the $C^2$-rectifiability problem are also discussed.
101 - Alessia E. Kogoj 2016
We show how to apply harmonic spaces potential theory in the study of the Dirichlet problem for a general class of evolution hypoelliptic partial differential equations of second order. We construct Perron-Wiener solution and we provide a sufficient condition for the regularity of the boundary points. Our criterion extends and generalizes the classical parabolic-cone criterion for the Heat equation due to Effros and Kazdan.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا